

Some Fluid Flow challenges in the oil industry

José Roberto Fagundes Netto PETROBRAS - Research Center Artificial Lift and Flow Assurance Group

EBECEM 2008

Overview:

- PETROBRAS and its Research Center
- The Artificial Lift & Flow Assurance Group

Two cases:

- The Single Phase Case
- The "MOBO" Case

- Market Value: US\$ 242,7 billion
- -Net Operating Revenues : US\$ 87,7 billion
- Net Income : US\$ 13,1 billion
- Investments : US\$ 21,0 billion
- Shareholders: 272.952
- -Employees: 68.931
- Reserves (SPE):15.000 billion barrels of oil and gas equivalent (boe)
- Production Platforms: 109 (77 fixed; 32 floating)

-Productive Wells: 12.935 (738 offshore)

-Daily Production:

1.918.000 barrels per day (bpd) of oil and LPG 62 MM m³ (382.000 boe) per day of natural gas -Refineries: 15

-Yield From Refineries: 1.965 million barrels a day

-Tanker Fleet: **153** (**54** belonging to Petrobras)

-Gas Stations: 5.973

- Fertilizers: 3 Plants: 235,000 tons of ammonium,

700,000 tons of urea

- Pipelines: 23.142 Km

PETROBRAS IN NUMBERS - 2007

PETROBRAS ORGANIZATIONAL CHART

PETROBRAS CENPES

Original Site: Total Area:114.000 m² Building:75.000 m² 137 Laboratories 30 Pilot plants

2010

CENPES Expansion and Data processing integrated Center: Total Area: 190.000 m² Building: 114.000 m²

PETROBRAS R&D Center

Expansion (Jan/2008)

Aquisição 17/05/2007 - 13:07 GMT

Human Resources

R&D EXPENDITURES

R&D

CENTER

TECHNOLOGICAL INTEGRATION

Types:

- Contracts and agreements with Universities and Research Centers with internal financial support
- ✓ Contracts with external financial support
- ✓ Networks of excellence

Over 120 Brazilian Institutions

Types:

- ✓ Joint Industry Projects
- ✓ Cooperating Research
- ✓ Strategic Alliances
- ✓ Technology Interchange

Over 70 International Institutions

TECHNOLOGICAL INTEGRATION PROGRAM WITH BRAZILIAN R&D INSTITUTIONS

Funding for R&D projects is na obligatory part of the brazilian concession agreements

- 38 networks spread across different oil & gas themes
- 7 local competence groups
- 71 Institutions spread across 19 units of the brazilian federation

The Artificial Lift and Fluid Flow Group

Artificial Lift Group

Real Time Control Lab.

Main Challenges:

Gas Lift in Subsea wells High power, Long Life ESP in Subsea wells Subsea Multiphase Pumping System **Real Time Production Optimization** Heavy Oil Artificial Lift

3 Ph.D.

5 M.Sc.

4 B.Sc.

-

Flow Assurance Group

4 Chem. Labs.

Main Challenges:

Hydrates formation & mitigation techniques Organic Deposition (Wax & Asfaltenes) Inorganic Deposition (Scale)

3 Ph.D.

4 M.Sc.

3 B.Sc.

11 Tech.

Multiphase Flow Experimentation & Modeling Multiphase S.-State & Transient Simulation Leak-Detection Systems Emulsion & High Viscosity Fluid Flow

The Fluid Flow Group

Focus:

Heavy Oil Scenario: Emulsion viscosity forecast

Subsea Scenario:

Slug structure forecast

Two-phase Offshore Gas Pipelines:

Leak detection system

The Network:	Purpose:
PETROBRAS	Develop R&D Activities with focus on Multiphase Flow in Pipelines
UNICAMP UFRJ PUC-Rio UFSC UFSC UTFPR UFU USP-SP USP-SC	Subjects: Slug Flow Structure 3-phase flow Wave propagation in 2-phase flow Multiphase Flow in Large Diameter Pipelines Friction factor in flexible lines Nanotechnology to reduce friction factor (?)
First 3 Years => ~ R\$ 25 MM (US\$ 14 MM)	
Buildings	
Labs & Equipments	
Class rooms & Offices	

R&D Projects

Two interesting problems:

The Single Phase case The "MOBO" case

Background:

Single phase (oil) flow Steady state Laminar Flow (Re @ pipe inlet < 800)

Flow rate: 16.000 m³/day Pipe length: ~ 20 kms Pipe diameter: 12 inches

Is there any problem?

Hint:

Heavy Oil (16 °API \rightarrow 960 kg/m³)

Flow temperature @ pipe inlet: 60 °C

Subsea temperature: 4°C

Is there any problem?

Oil Viscosity vs Temperature

The Problem...

Heavy oil viscosity varies strongly with temperature.

1D models assume: Poiseuilli velocity profile at laminar regime Constant viscosity along pipe section

Depending on pipe insulation, the Radial Temperature Gradient may not be neglected.

Does this temperature/viscosity radial gradient

impacts pressure drop forecast?

The solution...

$$\begin{split} u_{r} \frac{\partial u_{r}}{\partial r} + u_{z} \frac{\partial u_{r}}{\partial z} &= -\frac{1}{\rho} \frac{\partial p}{\partial r} + \frac{1}{\rho} \left[\frac{2}{r} \frac{\partial \mu r^{\partial u_{r}}}{\partial r} + \frac{\partial \mu \left(\frac{\partial u_{r}}{\partial z} + \frac{\partial u_{z}}{\partial r} \right)}{\partial z} - \frac{2\mu}{r^{2}} u_{r} \right] \\ u_{r} \frac{\partial u_{z}}{\partial r} + u_{z} \frac{\partial u_{z}}{\partial z} &= -\frac{1}{\rho} \frac{\partial p}{\partial z} + \frac{1}{\rho} \left[\frac{1}{r} \frac{\partial \mu r \left(\frac{\partial u_{r}}{\partial z} + \frac{\partial u_{z}}{\partial r} \right)}{\partial r} + \frac{\partial \mu}{\partial u_{z}} \right] \\ \frac{1}{\alpha} u_{z} \frac{\partial T}{\partial z} &= \frac{1}{r} \frac{\partial r \frac{\partial T}{\partial r}}{\partial r} + \frac{\mu}{2} \left(\frac{\partial u_{z}}{\partial r} \right)^{2} \\ \frac{\partial u_{z}}{\partial r} &= \frac{Q}{\pi} \frac{1}{\int_{0}^{r} v r \left[\int_{r_{w}}^{r} \frac{r}{\mu(T)} dr \right] dr}{\int_{0}^{r} v r \left[\int_{r_{w}}^{r} \frac{r}{\mu(T)} dr \right] dr} \\ \frac{Q}{2\pi \alpha} \frac{\int_{0}^{r} v r \left[\int_{r_{w}}^{r} \frac{r}{\mu(T)} dr \right] dr}{\int_{0}^{r} v r \left[\int_{r_{w}}^{r} \frac{r}{\mu(T)} dr \right] dr} dr \\ \frac{Q}{2\pi \beta} \frac{V_{r}}{V_{r}} \left[\int_{0}^{r} v r \left[\int_{r_{w}}^{r} \frac{r}{\mu(T)} dr \right] dr} dr \\ \frac{Q}{2\pi \beta} \frac{V_{r}}{V_{r}} \left[\int_{0}^{r} v r \left[\int_{r_{w}}^{r} \frac{r}{\mu(T)} dr \right] dr \right] dr} dr \\ \frac{Q}{2\pi \beta} \frac{V_{r}}{V_{r}} \left[\int_{r_{w}}^{r} \frac{r}{\mu(T)} dr \right] dr \\ \frac{V_{r}}{\partial z} = \frac{V_{r}}{V_{r}} \left[\int_{0}^{r} v r \left[\int_{r_{w}}^{r} \frac{r}{\mu(T)} dr \right] dr \right] dr \\ \frac{V_{r}}{\partial z} = \frac{V_{r}}{V_{r}} \left[\int_{0}^{r} v r \left[\int_{r_{w}}^{r} \frac{r}{\mu(T)} dr \right] dr \right] dr \\ \frac{V_{r}}{\partial z} = \frac{V_{r}}{V_{r}} \left[\int_{0}^{r} v r \left[\int_{r_{w}}^{r} \frac{r}{\mu(T)} dr \right] dr \right] dr \\ \frac{V_{r}}{\partial z} = \frac{V_{r}}{V_{r}} \left[\int_{r_{w}}^{r} \frac{v}{\mu(T)} dr \right] dr \\ \frac{V_{r}}{\partial z} = \frac{V_{r}}{V_{r}} \left[\int_{r_{w}}^{r} \frac{v}{\mu(T)} dr \right] dr \\ \frac{V_{r}}{\partial z} = \frac{V_{r}}{V_{r}} \left[\int_{r_{w}}^{r} \frac{v}{\mu(T)} dr \right] dr \\ \frac{V_{r}}{\partial z} = \frac{V_{r}}{V_{r}} \left[\int_{r_{w}}^{r} \frac{v}{\mu(T)} dr \right] dr \\ \frac{V_{r}}{\partial z} = \frac{V_{r}}{V_{r}} \left[\int_{r_{w}}^{r} \frac{v}{\mu(T)} dr \right] dr \\ \frac{V_{r}}{\partial z} = \frac{V_{r}}{V_{r}} \left[\int_{r_{w}}^{r} \frac{v}{\mu(T)} dr \right] dr \\ \frac{V_{r}}{\partial z} = \frac{V_{r}}{V_{r}} \left[\int_{r_{w}}^{r} \frac{v}{\mu(T)} dr \right] dr \\ \frac{V_{r}}{\partial z} = \frac{V_{r}}{V_{r}} \left[\int_{r_{w}}^{r} \frac{v}{\mu(T)} dr \right] dr$$

... a simplified 2D model based on Navier Stokes equations

Model: Poiseuilli solution with viscosity = f(radius)

Comparing results with CFD and 1D commercial code

Comparing results with CFD and 1D commercial code

Final user requests model validation using actual measured data

A R&D activity was approved to validate the proposed model, in cooperation with a Brazilian University

A friendly software based on the model shall be built and made available for the final user.

The "MOBO" Case

The MOBO Case

Background:

- Electrical Submersible Pumps have being used in Oil Industry ~ 100 years (onshore application)
- PETROBRAS was the first to use this technology downhole in offshore wells ~ 10 years ago

Background:

PETROBRAS

ESP Characteristics:

Geometry designed for downhole installation (typically 40 meters long, OD < 20 cm) The produced fluid cools the electrical motor May handle up to 40% of Gas

Increase production (may double oil flow rate) Mean Time Between Failure ~ 3 years

Background:

BR

PETROBRAS

High intervention costs at Deep Water Installation
 ESP presents Low \$\$ attractiveness

The MOBO Case

ESP at a dummy well The "MOBO"

Is there any problem?

Hint:

The system would be tested producing from a well 200 m distant

This well should produce with ~ 20% GVF

The Problem...

The pump may handle 40% Gas.

Slug flow occurs between the well and the MOBO

The flow entering the MOBO faces expansion

Gas-Liquid Separation may occur, creating a Gas-Liquid interface

The MOBO Case

BR PETROBRAS

The solution...

A similarity study was done and a physical model was built (scale 1:7) to observe the problem → The problem occurs!

A simple solution was required:
 → The system was under manufacture
 → The solution should be tested previously
 → Lack of time!

The solution...

To drill small holes along the Shroud...

small enough to avoid the liquid shortcut when 100% liquid

large enough to allow all the gas shortcut when 40% gas

The MOBO Case

The solution...

The solution was tested in the scaled loop with success

The change order was acceptable for the field prototypes

Four systems were installed in Golfinho Field, at Espírito Santo Basin.

The MOBO Case

Status today:

- 2 MOBO's started operation in December 2007 2 others not in operation yet
- # 1: Liquid flow rate: 36.000 bpd
 Water Cut: 60%
 Gas Volume Fraction: 5% @ pump inlet
 Running OK
- # 2: Liquid flow rate: 10.000 bpd Water Cut: 4%
 Gas Volume Fraction: 40% @ pump inlet Running with instabilities – Pump GVF limit!

Thank You