13º ENCIT – Congresso Brasileiro de Engenharia e Ciências Térmicas

UFU-Uberlândia - MG, 05 a 09 de dezembro de 2010

FUNDAMENTOS E APLICAÇÕES DE TRANSFERÊNCIA DE CALOR COM MUDANÇA DE FASE: EBULIÇÃO E CONDENSAÇÃO (4ª aula)

Júlio César Passos

jpassos@emc.ufsc.br

http://energetique-juliocesarpassos.blogspot.com

Universidade Federal de Santa Catarina Centro Tecnológico - Departamento de Engenharia Mecânica **LEPTEN/Boiling** Laboratórios de Engenharia de Processos de Conversão e Tecnologia de Energia

Plano da aula

- Aplicações
- · Aspectos históricos sobre a condensação
- Tipos de condensação
- Condensação em película modelo de Nusselt
- Exemplo resolvido
- Condensação em microcanais (resultados preliminares, obtidos no LEPETEN/Boiling - UFSC)

Aplicações

- Condensadores com e sem superfícies microaletadas indústria de refrigeração, ciclos de potência (geração termelétrica)
- Tubos de calor
- Termossifões bifásicos
 - coletores solares

fornos de cocção

Aspectos históricos da condensação

1769 - James Watt obtém a patente do condensador de superfície;

(147 anos)

1916 - Modelo de Nusselt para a condensação em película (in Nusselt, W., "Die oberflachenkondesation des wasser dampfes", Z. ver., 1916)

1930 - Schimidt et al. apresentaram um dos primeiros trabalhos sobre a condensação em gotas.

TIPOS DE CONDENSAÇÃO

TIPOS DE CONDENSAÇÃO

- O tipo de condensação depende do ângulo de contato líquido-superfície.
- Dois tipos:
 - Condensação em gotas maior transferência de calor, porém sua manutenção é muito difícil.
 Ocorre com fluidos não molhantes.
 - Condensação em película modo mais comum de condensação. Formação de uma película líquida sobre a superfície. Ocorre com fluidos molhantes.

CONDENSAÇÃO EM GOTAS (1) Condensação sobre uma superfície vertical $(q=0, 12 \text{ W/cm}^2; \Delta T=0, 05 \text{ K})$ $(h = 24 \text{ kW/K}.m^2)$ a) início **b) 16 s** c) 32 s

Diâmetro da superfície: 18mm

Boilina

in Stephan, K., "Heat Transfer in Condensation and Boiling", Springer, 1992, p. 29

CONDENSAÇÃO EM GOTAS (2)

Condensação sobre uma superfície vertical

Boiling

(in J. H. Leinhard, "A Heat Transfer Textbook", 2nd ed., Prentice-Hall, 1987)

Codensação em gotas (3)

Condensação sobre uma superfície coberta com teflon

(in Ganzeles, F.L.A., 2002, "Drainage and condensate heat resistence in dropwise condensation", PhD thesis TuE-Eindhoven-Holanda)

PTEN LABORATÓRIOS DE ENGENHARIA DE PROCESSO DE CONVERSÃO E TECNOLOGIA DE ENERGIA

Padrões na codensação em gotas (3)

- I Trilha praticamente seca formada imediatamente após a drenagem.
- II Pequenas gotas com tamanho praticamente igual devido ao crescimento por condensação.
- III Gotas pequenas e grandes formadas principalmente pela coalescência.
- IV Gotas maiores e pequenas devido à coalescência.
- V Gotas grandes com algumas pequenas, onde a drenagem pode ocorrer muito em breve.

(in Ganzeles, F.L.A., 2002,

PhD thesis

TuE-Holanda)

Curva de Condensação Comparação: Condensação em gotas e em película

in Massoud Kaviany, "Principles of Heat Transfer", John Wiley & Sons, 2002, p. 610.

Boiling

PTEN LABORATÓRIOS DE ENGENHARIA DE PROCESSOS DE CONVERSÃO E TECNOLOGIA DE ENERGIA

Ângulo de contato e Molhabilidade

(Ângulo de contato estático)

Equilíbrio de forças na linha tripla

Equação de Young $\sigma_{SV} = \sigma_{SL} + \sigma_{LV} \cos \theta$ $\sigma_{SV} - \sigma_{SL} = \sigma_{LV} \cos \theta$

Força de adesão, Fad

$$F_{ad} = (\sigma_{LV} + \sigma_{SV} - \sigma_{SL})$$

Força de Coesão, F_c

Força de Espalhamento, F_e

$$F_e = F_a - F_c$$

$$F_e = (\sigma_{LV} + \sigma_{SV} - \sigma_{SL}) - (2\sigma_{LV})$$

$$F_e = (\sigma_{SV} - \sigma_{LV} - \sigma_{SL})$$
da Eq. de Young $\sigma_{SV} - \sigma_{SL} = \sigma_{LV} \cos \theta$

$$F_e = \sigma_{SL}(1 - \cos \theta)$$

$$F_e = 0, \ \theta = 0$$
Líquido totalmente molhante
$$90^{\circ} < \theta < 180^{\circ}$$
Líquido molhante
$$F_e = -2\sigma_{LV} \ \theta = 180^{\circ}$$
Líquido totalmente não molhante
$$F_e = -2\sigma_{LV} \ \theta = 180^{\circ}$$
Líquido totalmente não molhante

Alteração do ângulo de contato

O MODELO DE NUSSELT

- Escoamento laminar;
- Propriedades físicas do fluido constantes;
- O sub-resfriamento do líquido na Camada Limite é desprezível, no balanço de energia;
- A equação da QM não considera os termos de inércia;
- Vapor em repouso, sem exercer força de arrasto ou de cisalhamento sobre o líquido;
- A interface líquido-vapor é lisa;
- A transferência de calor, através da película, ocorre por condução.

Nusselt (1882-1957)

Ernst Kraf Vilhelm Nusselt

Publicou, em 1916,

"Die Oberflachenkondensation des Wasserdampfes", Z. Ver. Deut. Ing., Vol. 60, 541, 1916.

O MODELO DE NUSSELT, $Re_{\delta} \leq 30$

PTEN LABORATÓRIOS DE ENGENHARIA DE PROCESSOS DE CONVERSÃO E TECNOLOGIA DE ENERGIA

Boiling

O Modelo de Nusselt (3)

Ja: Número de Jakob

PTEN LABORATÓRIOS DE ENGENHARIA DE PROCESSO DE CONVERSÃO E TECNOLOGIA DE ENERGIA

Boiling

Número de Nusselt modificado: condensação em película sobre placa vertical

In Incropera et al. (2008), LTC, p. 409

Número de Nusselt : condensação em película sobre placa vertical

Boiling

UFU-Uberlândia- 05-09/12/2010

Modelo de Nusselt: condensação em película para tubo horizontal

$$\begin{aligned} \overline{h_D} &= 0,729 \left[\frac{g \ \rho_l (\rho_l - \rho_v) k_l^3 h_{lv}^{'}}{\mu_l (T_{\text{sat}} - T_{\text{sup}}) D} \right]^{\frac{1}{4}} \\ \overline{Nu_D} &= 0,729 \left[\frac{g \ \rho_l (\rho_l - \rho_v) h_{lv}^{'} \ D^3}{\mu_l k_l (T_{\text{sat}} - T_{\text{sup}})} \right]^{\frac{1}{4}} \end{aligned}$$

Correção para o cálculo de $\overline{h_D}$ para uma coluna vertical com tubos horizontais

Exemplo C1: condensação em película sobre uma placa plana vertical

Vapor d'água saturado a 1 atm condensa sobre uma placa vertical com 2,5 m de altura e 0,5 m de largura, mantida à temperatura de 54°C. Calcule a taxa de calor transferido à placa, a vazão de condensado e o limite x para validade do modelo de Nusselt.

Propriedades da água líquida, à Correção de h_{lv} $T_f = \frac{T_{sat} + T_p}{2}$ $h'_{l} = h_{lv} (1 + 0,68Ja)$ $\rho_1 = 973,7 kg / m^3$ $Ja = \frac{c_{pl}(T_{sat} - T_p)}{h_l}$, Número de Jakob $k_1 = 0,668W / (mK)$ $\mu_{l} = 3,65 \times 10^{-4} Pa.s$ $Ja = 0.0855 \rightarrow h_{lv} = 2388.22 kJ / kg$ $c_{pl} = 4195 J / (kgK)$ 1ª tentativa, hipótese laminar com ondulações $\sigma = 0.063 N / m$ $30 \le \text{Re}_{\delta} \le 1800$ Pr = 2,29Correlação Propriedades à T_{sat} Recomendada $\operatorname{Re}_{\delta}$ $\rho_v = 0.596 kg / m^3$ por **Kutateladze** $h_{\rm ho} = 2257 kJ / kg$ $1,08 \text{Re}_{\delta} - 5,2$ k_{i}

Exemplo C1 (cont.)

 $30 \le \operatorname{Re}_{\delta} \le 1800$

$$\operatorname{Re}_{\delta} = \left[\frac{3,70\kappa_{l}L(T_{sat} - T_{p})}{\mu_{l}h_{lv}'\left(\frac{\nu_{l}^{2}}{g}\right)^{\frac{1}{3}}} + 4,8\right]^{0,82} = 2425 > 1800$$

Portanto, deve ser o regime turbulento.

2ª tentativa, região turbulenta

$$\operatorname{Re}_{\delta} = \left[\frac{0,069\kappa_{l}L(T_{sat} - T_{p})}{\mu_{l}h_{lv}^{'}\left(\frac{\nu_{l}^{2}}{g}\right)^{\frac{1}{3}}}\operatorname{Pr}_{l}^{0.5} - 151\operatorname{Pr}_{l}^{0.5} + 253\right]^{\frac{4}{3}} = 2941,2$$

$$\operatorname{Re}_{\delta} = \frac{4m}{\mu_{l}b}$$

$$m = \frac{\mu_{l}b\operatorname{Re}_{\delta}}{4} = 0,134kg/s$$

$$q = mh'_{lv} = 320481 W$$

$$\overline{h}_{L} = \frac{q}{A_{p}(T_{sat} - T_{sup})}$$

$$\overline{h}_{L} = 5573,6 W/(m^{2}K)$$

Exemplo C1 (cont.)

 $Re_{\delta} \leq 30$, Domínio para o modelo de Nusselt

$$\operatorname{Re}_{\delta} = 3,78 \left[\frac{\kappa_{l} x \left(T_{sat} - T_{p} \right)}{\mu_{l} h_{lv}^{'} \left(\frac{\nu_{l}^{2}}{g} \right)^{\frac{1}{3}}} \right]^{\frac{3}{4}} = 30$$

$$x^{3/4} = 0,0338; x = 0,011m$$

Valor local de h_{cond} , em x=0,011m

 $h_x = 9.730,3 W/(m^2 K)$

$$\overline{h}_L = 12.973,7 W/(m^2 K)$$

Condensação em convecção forçada em mini e microcanais

Aplicações

Condensador de chiller http://www.carriercca.com

Multiportas de alumínio extrudado Utilizadas em microcondensadores www.hydro.com

Condensação em canais convencionais

- Formulações analíticas permitem cálculo do coeficiente de transferência de calor por convecção e queda de pressão para os regimes de escoamento.
- Forças gravitacionais dominantes sobre forças de atrito e de tensão superficial.

Condensação em canais convencionais

Regimes de escoamento:

Regimes bifásicos normalmente encontrados em condensação (Stephan, 1992)

Condensação em microcanais

- Aumento da taxa de transferência de calor e da queda de pressão.
- A força de tensão superficial torna-se dominante sobre a aceleração da gravidade e o atrito.
- Modelos propostos para o cálculo do h e de ∆p em macrocanais não funcionam muito bem em microcanais.

Mapa de padrões de escoamento em microcanais

	Flow regimes			
	Annular	Wavy	Intermittent	Dispersed
	ALL LANGE		". Constan	15. 10 . VI SHE
8	Mist flow	Discrete wave (0)	Slug flow	Bubbly flow
	EAL D	Ada	aller.	
sus	Annular ring	Discrete wave (1)	Slug flow	Bubbly flow
w patte	a la s	Contraction of the second	C) C	1000 - 10 - 10 - 10 - 10 - 10 - 10 - 10
l⊟ _	Wave ring	Discrete wave (2)	Plug flow	Bubbly flow
1			2 0	
	Wave packet	Disperse wave (3)	Plug flow	
1	Annular film	Note: Numbers above denote intensity of secondary waves		

Padrões de escoamento para a condensação em microcanais encontrados por Coleman e Garimella (2003)

R-134a em canais retangulares, circulares e quadrados; 1 mm < D_h < 4,8 mm 150 kg/m²s < G < 750 kg/m²s

Condensação em convecção forçada

Mapa de padrões desenvolvido por Coleman e Garimella para condensação em canais circulares com D=1 mm

Condensação em convecção forçada do R-134a, no interior de microcanais

(baseado nos resultados preliminares do trabalho de mestrado de Gil Goss Jr., LEPTEN/Boiling - UFSC)

Goss Jr., G., Marini, S.F., Passos, J.C., Heat Transfer and Pressure Drop Condensation of R-134a inside Parallel Microchannels, in Proceedings of the ASME/JSME 2011, 8th Thermal Engineering Joint Conference - AJTEC2011, March 13-17, 2011, Honolulu, Hawaii, USA, 9 pages.

Condições de teste

- Estudo da condensação convectiva em microcanais:
 - Microcanais paralelos, circulares, D = 0,8 mm.
 - R-134a
 - 50 kg/m²s < G < 420 kg/m²s
 - 6 bar < p < 12 bar
- Dados experimentais × correlações e modelos:
 - Coeficiente de transferência de calor por convecção (h)
 - Queda de pressão

Condições de teste

Seção de teste Características:

Composta de 8 microcanais (tubos de cobre, D = 0,8 mm) paralelos;

- Instrumentada com:
 - 16 termopares;
 - 2 transdutores de pressão Warme;
 - 3 coolers Peltier.

Localização termopares

90

R134a

15

35

45

55

75

Resultados preliminares

Mapa de padrões desenvolvido por Coleman e Garimella

in, Goss Jr., G., Macarini, S. e Passos, J.C. (ASME-2011, Hawaii)

Resultados

Resultados

Resultados

Correlação de Yan e Lin (1999)

Agradecimento aos órgãos financiadores

Muito obrigado pela atenção.

jpassos@emc.ufsc.br

http://energetique-juliocesarpassos.blogspot.com

www.lepten.ufsc.br

