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Abstract

The transient heat transfer in a solid undergoing
ablation is a nonlinear problem, which involves a
moving boundary that is not known a priori. In this
paper, the ablation problem is solved using constant
material properties and constant heat flux. The
analogy between the heat transfer in a solid body and
the current in an electric circuit for time-dependent
electrical devicesis used. The results compared quite
well with the numerical solution presented by
Blackwell.

Nomenclature

C Global Electric Capacitance

c Specific Heat at Constant Pressure
F Electric Power Source

f Mean Temperature Position

L Electric Impedance

k Thermal Conductivity

0  HeatFlux

}/R Electric Conductance

Mean Temperature/ Mean Electric Potential

T Initial Temperature/ Reference Electric
Potential

T Front Face Temperature /
Front Face Electric Potentia

T,  Heat Penetration Front Temperature / Heat
Penetration Front Position Electric Potential

T Melting Temperature
t Time Coordinate

t Melting Time
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X Space Coordinate
d, Heat Penetration Front Position
d, Ablation Front Position
r Density
[ Heat of Ablation
[ ntroduction

Transient heat conduction in a solid undergoing
ablation represents an area of great technological
importance. Problems of this type are inherently
nonlinear and involve a moving boundary that is not
known a priori. According Chung' and Zien?, the
exact analytical solution for transient heat transfer in
a solid accompanied by ablation is very difficult and
practically nonexistent. Only numerical and
approximate analytical solutions have been made
available and they necessarily require considerable
numerical computation, even if a simplified model of
the problem is used in the study.

This work makes use of the similarity of the
mathematical formulation of heat transfer in a solid
body and the carrying of electric current in an electric
circuit, as presented by Horvay® to the freezing of a
growing liquid column process. This technique
represents a different method to solve the phase-
change ablation problem.

Literature Review

Landau® first proposed the idealized ablation problem
and solved it by numerical integration for the case of
a semi-infinite melting solid with constant properties
and with its face heated at a constant rate.

Sunderland and Grosh® solved the same Landau’s*
problem, but they used the finite difference method of
solution for the case where the heat flux at the face
may vary with thetime.

Goodman® studied Landau’s problem usi ng the heat
balance integral method. Biot and Agrawal® used the
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variational method for the analysis of ablation for
variable properties.

Storti® considered a one-phase ablation problem as it
was a two-phase Stefan one, by the introduction of a
fictious phase occupying the region where the
material has been removed. He solved it by the finite
element method.

Physical Model

Storti® considered that, when a severe radiation and/or
convection heat flux reaches one of the faces of the
ablating material, initialy in its ‘virgin’ phase, the
temperature rises, and the material can experience
one or several chemical reactions, which must be
strongly endothermic, for the ablate phenomenato be
effective. The material exposed to the thermal load is
removed by mechanical (high shear stresses) or
chemical action. In the case of a phasechange to a
phase with very low mechanical strength, the material
is considered removed immediately after it reaches
the phase-change temperature. This Stefan-type or
phase-change ablation model is the physica model
adopted in thiswork.

Blackwell® used the finite control volume method
with exponential differential to solve Landau's
problem and his results will be used as a benchmark
in thiswork.

The following physical model is adopted: a semi-
infinite ablative material is heated by an uniform and
constant heat source. In the beginning, the heat
penetrates the material, raising the temperature of part
of the material. The length of this part is named
d,(t), where d, (0)= 0. The heating continues until

the front face temperature (T,) reaches the melting
temperature (T, ) and the ablation starts. During the

ablation, part of the heat is used to keep T, at T,

and the rest is used to change the phase of the
ablation material. The phase-change phenomenon
consumes part of the virgin material. The length of
this part is denominated d,(t), where d,(t_)=0,
where t isthe time in which T, reaches T . Fig. 1

shows a schematic of this physical model.
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Fig. 1- Physical model.

Analytical Mode

The following one-dimensional heat transfer equation
is used to determine the ablation rate and the heat
penetration depth:

T _ 1

T o
T TXE X

X

@

rc

This equation is integrated in X from d,(t) to d,(t).
The results are rearranged using Leibnitz's integral
formula, getting:

dot)
e, L ke 1o, Tay()) 0%
tdl(l) dt
1o T(d, )8 jlt(‘) @
_ ITE,0) |, 170,0)
x Ix
dy(t)
o dx
Defining §___ a0 , Substituting in EQq. 2,

(@,)- d,(t))
simplifying and rearranging, it is obtained:
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Using finite difference technique to discretize the
space derivates, one gets:

where f is a constant value between 0 and 1 that
represents the position of the mean temperature value
(see Fig. 1). Substituting these expressions in Eq. 3
and collecting similar terms, it is obtained:

dt
_€ . dd(t) k @
- TR SNORENO)I @
(re.()- T
é  dd,(t) k

The terms of Eq. 4 can be associated with the
following components of an electrical circuit (see Fig.
2):

Table 1- Electric Analogy Parameters

r ¢,(d.()- dift) = c) Global electric
capacitance
dd,(t
rc dzt( ) =F,(t) Electric power source
< =1 Electric conductance
f(d,(t)- d.t) Ri(t)
r CP d(;lst) = Fl(t) Electric power source
k 1

Electric conductance

Electric potential

Electric potential

Electric impedance

Substituting these termsin Eq. 4, one gets:

1 ¥ —
F, (t)+m§(ﬂ -T) ©)

c(yel -

MD:MD> (D

é 1 0=
+&F, (1)- Rl(t)g(T-Tl)

The last equation is a well know expression for
transient behavior of electric circuits and represents
the circuit shownin Fig.2

F(t) - F(t)
g g T
Il |I
Ay A
R(t) R(t)
::C{'.-J
T..-..
= '___.?".
a &

Fig. 2- Electrica circuit represented by Eq. 5

Thefollowing boundary conditions can be considered
for the pre-ablation period:

_ddlzo (6)
dt

S Jr x=d (7
kﬂx q(t) 1

-kﬂzrcpMDT x=d o ®
x dt

T2:Tr :X:dz (9)

Using finite difference technique to discretize the
space derivate of the boundary conditions and
associating it with the electrical components, Egs. 5
to 9 can berewritten as:

d(;jtl RO, (10)
y ﬂT%d;(t)) _ (ré-(tT)_) ~q) a
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R,(t) (12)

T,=T 13

These boundary conditions, when applied to Eqg. 5,
lead to the simplified electric circuit show in Fig. 3.

F(t)
I

|I
1T 2 3

COECIRE

A

Fig. 3- Electrical circuit represented by Eq. 5 with
the pre-ablation boundary condictions.

Similarly, the following boundary conditions can be
considered for the ablation period:

_kﬂ_q_rlﬂ » X=dq (14
1x dt
T]_:Tm ’X:dl (15)
kﬂT rcp—ddZ(t)DT x=d (16)
1x dt
T2 :Tr aX:dz (17)

Adopting the same procedure as before, i.e., using
finite difference technique to discretize the space
derivate of the boundary conditions and associating it
to the electrical components, one gets:

_ ﬂT(dl(t)) = (Tl - T) = -

k RO =q(t)- L() (18)
T =Ty (19)
-kﬂ: (TZ'-F) :(T_'Tz):

Tx  "1(d,)-d,t)  R(t) (20

T,=T, (1)

In these equations, L(t) is the electric impedance

defined as | (1) | | d(;i (see Table ).

Applying these boundary conditions to Eq. (5), one
getsthe simplified electrical circuit shown in Fig.4.

F(ty — F(t)
Y I P!
Ii !I
| 3
qlt) JD R(t) R(t)
L cioT
1T
= X
a &

Fig. 4 - Electrical circuit represented by Eq. 5 with
the ablation boundary conditions.

The electrica circuits shown in Fig.3 and Fig.4 can
be solved by the Kirchoff Nodes Law, which states
that the sum of all electric current that gets in or out
of anodeis equal to zero. The application of thislaw
leads to the following equations, concerning the
electrica circuit shown in Fig. 3, for the pre-ablation
period:

Node 1: (E’i-t.r) - oft) (22
dT _¢ 1 U =
Node 2: C(t)_t_gF :(1 )+R2(t)H(T2_ ) (23)
- (T 'Tl)
R (1)
Node 3: _ 1 24
ode Fz(t)—m 24

Also, the following equation can be used:
T,=T, (25

Substituting Eq. 22, 24 and 25 in Eg. 23 and
simplifying, one gets for Node 2:

4T 2R (¢ 5, 90) 26)
at e e
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Substituting the electric components by their
associated functions in the Eqg. 22, 24 and 26 and
manipul ating the expressions, one gets:

- - 80) o7 @

dT, 2T  dd{)_

dt @,0-d0) dt (28)

2T, dd,(t) , q(t)

@ 0)- a,t) dt rey(d,(t)- dyt)

co Gdf) K (29)
odt f{d,(0)-d,t)

Defining:

u(t)=d,(t)- d(t) (30)

and substituting on the expressions above, it is
obtained respectively:

T, :(1-f—k)u(t) qt)+T (31

dT . 2T duft)_ 2T, du(t), _qlt) )
dt u(t) dt uf) dt rcoult)

du(t): k (33)
dt frcpuiti

Solving the Eq. 33 for u(t,)=0 as initial condition
one gets:

2kt (34)

Substituting this expression on Egq. 32 and
simplifying one gets:

(4T +T =T +t) ft (39
dt 2rc,k

Using 'T(to)zT as the initial condition for the

r

solution of EQ. 35, the following expression arises:

T=7 +150(0) ——dt (36)

Substituting Eq. 34 and Eqg. 36 at the Eq. 31, the
following expression is obtained:

2t 1! ft (37)
T =(1- f t)+T +=glt ) [———dt
1= 1) kfrec, q()+r+tgﬂ()\12rcpk

Substituting the Eq. 34 into Eq. 30 and rearranging
theterms, it is obtained:

002 +a )

The end of pre-ablation period is defined by T, =T ,

a t=t_. In the case of a constant heat flux
(g(t)=q), tm can be calculated by Eq. 37, giving:

® 02
C_frekE T,oT L (39)
S @i

ée 3o g

Using the Kirchoff Law for the ablation period
electrical circuit shown in Fig. 4, one gets the
following equations:

ExtraEquation: T, =T, (40)
Extra Equation: T, =T, (42)
Nodel: - _ L1 (F.1)=qf)- (42)
Rl(t)(T T,)=qft)- L(t)
dT _eF(t), 1 -7)
Node2: g7 ~Ec () "SR 04" @)
+?F1(t) 1 g__
e cormy
Node 3: __ 1 44
Fz(t)-m “9

Substituting Eq. 40, 41, 42 and 44 at Eq. 43 and
simplifying the terms, one gets for Node 2,

9T 280 7) B0 F 1)

dt  c(t) (45)

Substituting the electrical components by their
associated functions in Eqgs. 42, 44 and 45 and
manipul ating these expressions, one gets:

dd , (t) k(T-T,) Laf) (46)
rl
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dT __ 21 -T) dd,f), ft)

t (dz(t)' dl(t)) dt r Cp(dz(t)' dl(t)) (47)
¥ Idzhj:'L dlitiigf' T.)- :;_pg%
dd,(t) _ k (48)

dt  rc, fd,{t)- dt)
Combining the Eq. 48 and Eq. 46 one gets:

- k(T - Tm)
dt r1(1- £)(d,(t)- o, @) 49
q(t) k

-t
ri re,f idziti- dlitii

Using again the u(t) definition, (u(t)=d,(t)- d,(t))
and substituting on the Eq. 46, 47, 48 and 49 one
gets, after collecting similar terms:

dd,(t)__k(T-T.) . aft) (50)
dt I (- flu(t) rl

1 uf)z (51)

¥ rc [ f)u)

d,t) .k (52)
dt  rc, fu(t)

du)_ 1@k, k(T,-T)2 qft (3)

(- f)ri g vl

From this point on, there are two ways to solve the
problem:

1) Numerical approach: to solve the set of Equations
(Eg. 50— 53) by any numerical method.

2) Analytical approach: to consider T as a constant
value, calculated from Eq. 36 with t =t _.

For the analytical approach, Eqg. (51) is not used and
Eq. (53) has the following solution for a constant heat
flux:

kel (1,-T)o
u(t)=—h+ T
qkc, f (- 1) 5 (54)
i éee 0 e 6 e a o
& . A 5 ]
-?Lambertwgﬂ—u(tm) - 1-exped ultn) - 1+expe 3 (- t) — :H+1§,
:': gkee | f,-T)o = "eket  (,-T)o = e kel | (n-Tow |
% g écpf 1) % % g écpf (1'fj5 7 g écpf () ot Ib
Substituting this expression in Eg. 52 and solving it
with d,(t_)=u(t_) astheinitial condition one gets:
% 0
¢ B
4, 0)=06,) s imgd_—ula) 7
ac, fckee 1 (r,-T)o - (55)
+ . -
€ Sc,f (-f)5 5
. ée 6 6 @ o
& . :E
In]; LambertWeg E—u(tm) — -1+e(pgq u(t,) ——- l+exp¢- d - ) _—ll}"y
CP T & & | (Tm-T)g - gkae (Tm-T)g - ¢ kr | & | (Tm T)g_l.'ﬂ
I § a1 : E gé F - g ot h-f) U
f i G g g g o p 200h

Substituting Eq. 54 and 55 at the definition of ul(t)
and rearranging the terms one gets:
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¢q
d,(t)=ult,)+ In ——- 1
A N (R .
g écpf (1' f) B ; ( )
] e I 6 @ Qi
i & D¢ i u
I Inhambert el u(t,) - 1-exped ut,) - lexpe- —J (t- t) — uuly
qc, i akee | +'|'m.'|'9 + ckee | +-|-m--|-9 ¢ krl a& | +-|-m_-|—9_5u.|.
i & ¢cf (-f)z - S g f @-f)z - & c, f (- f)zu
) e P g g é P 2 g e P 2aip
i & I o @ g
LoT) . Fa ub) o Sa k) S o@ ()
kee| T -T)9 q u - q u - q - a0,
- — o Lambert i -1 il - 1= - i 0t 1y
q§CFf+(1- B: amoer gkam ( -T)o ;engkae| (r,-T)o :expg krl ae | (T_-T)o_ﬂJrly
+ -0 S + -0 S +--0 Teoow
! gé §cpf 15 4 g (écpf -5 5 & §cpf [ f)%u t)
Results with the Blackwell® benchmark results. For

The electrical analogy analytical method developed in
this paper was used to solve the ablation problem
proposed by Landau. The two approaches for the
solution of the problem, as described before, are used
in this comparison. The ablating material considered
is Teflon, which properties, the same used by
Blackwell® in hiswork, are given in Table 2.

For both analytical approaches proposed, the main
concern was the determination of the value of the
parameter f. This parameter is very important because

it determines the position of T, which corresponds
to the mean temperature of the solid as can be seenin
Fig. 1 and the node 2 temperature (Fig. 3 and 4).

Fig. 5 shows a comparison between the present model
and the numerica Blackwell® results for the
temperature against position in a Teflon ablating
material for several time instants and for severa
values of the parameter f. From this figure it is
possible to observe that the theoretical curves using
f=0.6 compares better with the results of Blackwell®.
The value of f (see Fig.1) was selected so that the
beginning of the ablation was coincident for both
analytical and literature numerical models. In Fig. 6,
only Blackwell® results and the theoretical curve for
f=0.6 are presented. Both curves have basically the
same slope, indicating that the process of ablation is
well captured by the model proposed. In this plot, itis
also possible to verify the advancing of the burning
front with time, which is faster in the beginning of the
ablation, quickly decreasing its velocity, that reaches
aconstant value.

Figure 7 shows similar to Fig. 5 curves, but for the
analytical model with the use of the numerical
approach for the solution of the system of equations.
This equation system was numerically solved through
an algebra computer software. In this case, the value
of f=0.75 was found to present the best comparison

7

comparison purposes, Fig. 8 shows only two curves:;
Blackwell® numerical and the mathematical results
for f=0.75. This curve is similar to the one presented
in Fig. 6. Comparing Figs. 6 and 8, one can see that
the conparison shown in Fig. 6 is better. Also,
analyzing Figs. 5 and 7 together, one can note that,
comparing both models developed in the present
work, the numerical approach is much more sensitive
to variations of the parameter f than the analytical
approach.

Table 2— Teflon Thermophysic Properties and Test

Parameters

r 120Ib, / ft®

K 0.000036 Btu/ ft SR
C, 0.3Btu/Ib,R

| 1000Btu/Ib,
T, 1500R

T, 536

q 250 Btu/ ft’s
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Fig. 5- Comparison of the eléctrical analogy model
using the analytical approach, for several f

parameters, with Blackwell’ sresults.
1600
140000 of i \ ] ] Elackws
1200 4 1 ': 1 1 |,

10600 | |

Teimpsraiem [F

Il.l '-J.lI a !_IIII.I -IJ.:I'.I !I'.s 004 005 008 l.ll.'-'ll.' :.L',I'.-E-.IIU.I1LIL' -I'nl

Paorsithon {inj
Fig. 6 - Comparison between the electrical analogy
model, using the analytical approach and the best f

parameter, and Blackwell’ s results.
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Figure 9 presents a comparison between the
Blackwell results and the best curves obtained for the
analytical and numerical approaches of the analytica
model. One can note that the analytical procedure
results have a better agreement with the benchmark
data than the numerical approach. Both models can
predict very well the ablation front, but the analytical
approach presents a better comparison for the heat
penetration front. The temperature difference that is
found between the model proposed and the literature
results can be attributed to the differences in the
boundary conditions used at this front. In the case of
the Blackwell model, the boundary condition
considered was of the Newman type (insulation) far
from the heat penetration front, while in the present
model, the boundary condition considered was of the
Newman type too, but exactly on the heat penetration
front.
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Conclusions

The electric circuit analogy method developed in the
present work for one dimensional ablation problem
showed to be a powerful tool for the determination of
the burning front. Using the parameters described in
Table 1, simple circuits can be constructed, even for
more complex problems, and simple calculations fast
can be performed, even in small computers. The
lumped temperature of the nodes can be determined
using the parameter f=0.6, for the analytica
procedure, which presented the best results from the
two approaches adopted for the temperature
determination.

One should note that the traditional fully numerical
computation can take long computational time to
perform the same calculation. The comparison
between the prediction of the heat penetration depth
by the present model and the literature results is not
good, due to the different boundary conditions
adopted. The shape of the temperature curve as a
function of the position is not an important parameter
for the design of the reentry satellites protection
systems, if sharp profiles are expected, as shown in
this work. It is very important to note that, for the
final validation of this method as well of any result
shown in the literature, experimental results are
necessary, especialy to verify the boundary
conditions adopted.
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