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Summary 
 

The increase in the installed power of wind-generators in Brazil demands the development of 
forecast tools in order for this form of electrical energy generation to be integrated into the 
mainstream market of conventional energies. The objective of this work is to analyze the use of the 
results of the meteorological Eta model  for this purpose. The application of the results of this 
mesoscale model to give forecasts is carried out together with an artificial neural network (ANN)  
procedure to adjust the model output. The ANN is adjusted and tested by means of a comparison 
with measured wind speed data obtained by CELESC, the electricity distribution company of the 
Brazilian federal state of Santa Catarina in southern Brazil. 
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1. Introduction 

 
Within the next few years a considerable 

increase in the number of wind energy installations is 
expected in Brazil. PROINFA – Program of 
Incentives for Alternative Sources for Electrical 
Energy run by ELETROBRÁS – Brazilian Electrical 
Company has allowed the signing of contracts for the 
provision of installations for 1.1 GW wind generation 
capacity by December 2006 (see  
www.eletrobras.com.br [1]). For the state of Santa 
Catarina, located in the south of Brazil, than 
PROINFA plans the installation of more 220 MW, to 
be added to the  current 5.4 MW, of today, at two 
sites: 130 MW in Bom Jardim da Serra and 90 MW in 
Agua Doce.   

An increase in energy production from wind 
energy will require a forecast of the electrical energy 
generated in order to integrate this source into the 
mainstream market of conventional energies, [2].  

For the generation of local forecasts either 
physical models – such as the German Previento [3] 
procedure - or data driven procedures (see e.g. 
Xiberta and Flórez [2])- such as the WPPT system 
(DTU Denmark) [4] using a classical statistical 
approach or the ISET(Germany) [5] model based on 
artificial neural networks (ANN) - may be applied. 

The objective of this study is to present and 
discuss preliminary results of the use of an  Artificial 
Neural Network to adjust the output of the mesoscale 
forecast model Eta to field data recorded by 
CELESC- the Electricity Distribution Company of 
Santa Catarina. The Eta model is in operational use  
by CPTEC – Center for climate forecast, of INPE, the 
Brazilian Space Research Institute.  

 
 

2. Procedure 
 

Experimental data from meteorological masts 
operated by CELESC allow a direct comparison with  
the data obtained by the mesoscale meteorological 
forecast model Eta – which will be presented in the 
next section -  and the training of an artificial neural 
network to map the Eta output for these 
measurements.  

The CELESC  data  were  obtained  from a 
network of stations in the Brazilian federal state of 
Santa Catarina [5]. Each station comprises a 
meteorological mast with  anemometers installed at 
altitudes of 30 and 48 m. The latter were used for 
comparison with the Eta data. For the purposes of 
the training and testing of the ANN, the data set for 
each month or year of a specific site were divided 
into two halves.  The first one was used to train the 
ANN and the second one for a test of the application 
of the trained ANN. 

2.1 The Eta model configuration 
The mesoscale model Eta applies the model 

equations  expressed as the Eta coordinate, η, 
Mesinger [6], which is defined as. 
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where p is the air pressure and Z is the height. The 
indices t and sfc indicate model top and model 
surface, respectively. The index refers to values from 
a reference atmosphere, where, pref(0) is the air 
pressure at height 0, and pref(Zsfc) is the air 
pressure at the surface, both being taken from a 
reference atmosphere. Since it is pressure based, 
the surfaces of the coordinate are approximately 



horizontal. This feature is particularly suitable for 
regions with steep orography such as South America 
because of the presence of the Andes Cordillera. 

The time scheme is the forward-backward 
scheme modified by Janjic [7] for the adjustment 
terms and a modified Euler-Backward scheme for the 
advection terms. The space difference scheme 
prevents the two-grid internal gravity wave 
separation. The prognostic variables are 
temperature, specific humidity, horizontal wind 
speed, surface pressure, the turbulent kinetic energy 
and cloud liquid water. These variables are 
distributed on the Arakawa type E-grid. 

The model uses the Betts-Miller scheme (see 
Janjic [8]), to produce convective precipitation. 
Stable precipitation is produced explicitly through the 
Zhao cloud scheme (Zhao and Carr [9]). The surface 
hydrology is solved by the Chen scheme (Chen et al, 
[10]). This scheme distinguishes 12 types of 
vegetation and 7 types of soil texture. The radiation 
scheme package was developed by the Geophysical 
Fluid Dynamics Laboratory. The scheme includes 
short wave (Lacis and Hansen, [11]) and long-wave 
radiation (Fels and Schwartzkopf [12]). The radiation 
tendencies are updated every 1 hour.  

Initial soil moisture is derived from the monthly 
climatology, while the albedo is obtained from the 
seasonal climatology. The initial atmospheric 
conditions are taken from NCEP analyses. The 
lateral boundary conditions are inputed from the 
CPTEC global model forecasts (Bonatti [13]). The 
latter conditions are updated every 6 hours at the 
boundaries. The tendencies at these boundaries are 
distributed linearly within the 6-hour interval along 
the single outermost line of the model domain.  

The resolution of the Eta model in this study was 
40 km in horizontal and 38 layers in the vertical. The 
domain covers most of South America and part of 
adjacent oceans. 

2.2 Use of ANN 
 

Different ANN architectures, [14], were trained 
taking as input variables the output data from the Eta 
model and the measured data as a goal function. As 
Tlearn [15] tool was applied. Figure 1 shows the 
basic architecture of a multilayer perceptron with a 
hidden layer, [14]. Specifically the basic input data 
are the values for the latitudinal and meridional 
components u1 and v1 of the Eta velocity vector and 
the ∆T (=temperature difference between the layers 
at heights of 100 and 10 m) for a grid point of the Eta 
model. 
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Fig. 1: Architecture of a multilayer perceptron 

The ANNs were trained for a specific site and for 
50% of the data obtained within a year (training set) 
and their tests were carried out by comparison of the 
output data with the other 50% of the data (test set). 
 
3. Results and discussion 
 
3.1 Eta versus CELESC data 

Figure 2 shows a comparison between the six 
hour forecasting Eta data and those measured by 
CELESC for August 2003, for two sites: Campo-Erê 
and Imbituba, located in the interior of Santa 
Catarina and at the coast, respectively. The Eta 
results considered were the second, and last, daily 
computed results which consider  corrections based 
on the output from the first simulation computed 12 h 
previously. Eta  data were  obtained  for a  10 m 
altitude  and compared with  those of  CELESC  for  
48 m.  The  RMS  for these samples were  1.29  and  
2.00. As is to be expected, in  all   cases the  Eta 
results underestimated the measured data. The best 
results were obtained for the second Eta forecast for 
3 pm.  

 
Campo Êre Site, 3:00 pm, August 2003 
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Imbituba Site, 3:00 pm, August 2003 
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Fig. 2: Six-hour Eta forecast data for Campo-Erê and 
Imbituba sites compared with experimental CELESC 
data (without ANN). 

3.2 Using artificial neural networks 

Figure 3 shows a comparison of the Eta output 
after application of a trained ANN (multilayer 
perceptron, see Fig. 1) and the CELESC data. The 

RMS: 2.00 m/s 

RMS: 1.29 m/s 



best reduction of the RMS is obtained for the Campo 
Erê site (Fig. 3a). Campo Erê may be characterised 
by a simple terrain structure (gently rolling terrain, as 
compared to the complex situation of the coastal site 
at Imbituba).  
 

Campo Êre Site, 3:00 pm, August 2003 

0

2

4

6

8

10

1-Aug 5-Aug 9-Aug 13-Aug 17-Aug 21-Aug 25-Aug

W
in

d 
Sp

ee
d 

(m
/s

)

CELESC Data ANN Data  
(a)  

 
Imbituba Site, 3:00 pm, August 2003 
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Fig. 3: Six-hour Eta forecast data for Campo Erê and 
Imbituba sites compared with CELESC data, with 
trained ANN (ANN Applied: Num X , Table 1) 
 

Table 1 shows five architectures and input 
configurations for the multilayer perceptrons applied 
in this test. The basic configuration consists of five 
neurons. The types of activation function of the 
neurons applied can be seen in Table 2. For neuron 
5 both a monomodal and a bimodal function are 
tested. For each configuration the RMS deviation of 
the network output and the CELESC data for the test 
set of 2003 are given in the right column of Table 1. 
The values not in brackets refer to the monomodal 
activation function for neuron 5, and those in 
brackets to a bimodal function. Due to some data 
failures the number of examples are reduced to 80 
for Campo Erê, 170 for Agua Doce and 76 for 
Imbituba.  

 
Table 1: Architecture of the trained ANNs  

 
Nu ANN Architecture RMS (m/s) 

 
1 

5
4

3

2

1C1
C2
∆T

Input       Hiden       Output 
               layer 

  

 
CE – 1.697 (1.612) 
AD – 1.853 (1.722) 
Imb – 2.595 (2.610)
 
 

 
2 

5
4

3

2

1C1

∆T

C2

Input       Hiden      Output
         layer

CE – 1.728 (1.842) 
AD – 1.460 (1.626) 
Imb – 2.841 (2.597)
 

 
3 

5
4

3

2

1C2

C1

∆T

Input         Hiden   Output
                 layer

CE – 1.740 (1.666) 
AD – 1.550 (1.507) 
Imb – 2.724 (2.766)
 

 
4 

 

5
4

3

2

1C1

∆T

Input         Hiden   Output 
                 layer 

CE – 1.588 (1.623) 
AD – 1.558 (1.916) 
Imb – 2.700 (2.700)
 

 
5 

 

5
4

3

2

1C2

∆T

Input         Hiden   Output 
                 layer 

CE – 1.538 (1.543) 
AD – 1.713 (1.896) 
Imb – 2.796 (2.791)
 

 
CE= Campo Erê, AD= Água Doce, Imb=Imbituba 
(  ) RMS using a bimodal function in neuron 5 
C1= Eta components u1 and v1 for layer 1, at 10m;  
C2= Eta components u2 and v2 for layer 2, at 100m;  
∆T = temperature difference between layers 1 and 2. 
 

Table 2: Architecture of the trained ANNs 
 

Neuron Activation functions 
1 Linear (-∞ to +∞) 
2 Sigmoidal  bimodal (-1 to 1) 
3 Linear (-∞ to +∞) 
4 Sigmoidal binary (0 to 1) 
5 Sigmoidal  monomodal (0 to 1) or 

Bimodal (-1 to 1) 
 

Figures 4 shows a comparison of the measurements 
with the corresponding forecast points (forecast 
horizon 6 h) both for the original Eta output and after 
the application of the ANN. The data refer to the site 
‘Agua Doce’ (also - as Campo Erê – a site with 
simple terrain in the interior of the state), from 
October to December 2003. For this example the first 
half of the data was used as a training set, the 
second half served as a test set.  Figures 5a) and b) 
give the respective scatter diagrams for 6h forecast. 
 

 

 

 

RMS: 1,87 m/s 

RMS: 0,91 m/s 



Comparasion (CELESC Data - ETA Data - ANN Data) October to 
Dezember/03 
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Fig. 4: Comparison of Eta data and ANN with 

CELESC data, for the Água Doce site. 
 

October to December, 2003. Dispersion of the speeds - 
Água Doce Site 
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October to December, 2003. Dispersion of the speeds - 

Água Doce Site 
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Fig. 5: Dispersion of the speeds for Eta and CELESC 
data (a). Dispersion of the speeds for ANN and 
CELESC data (b).  
 

4. Conclusions  
 

The application of the output of the Eta 
meteorological model in combination with ANNs was 
tested using a set of measured data from a region in 
southern Brazil. Even though the RMS errors of the 
final forecasts are not as good as those obtained by 
forecast models in Europe (best case for the 6h 
forecast for Brazil: approx 1.5 m/s as compared to 
approx. 1 m/s for Europe) the results appear 
promising, taking into account the limited data set 
and the coarse resolution of the model grid (40 km). 
The latter may be the reason for the poor 
performance of the procedure for the station located 
on the coast.  These problems may be solved 
through a reduction in the mesh size of the Eta 

model, which may be applied to confined regions, 
and an increase in the empirical data set.   
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