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INTRODUCTION 

Most of the production costs of consumer products are 
directly related to the amount of raw material involved in their 
manufacturing. Cost down lead to increase the compactness 
and thus the specific power of the systems. The thermal 
control devices involved in the systems requires more and 
more efficient cooling processes insuring increasing heat flux 
removing in reducing spaces. Boiling in narrow spaces is an 
attractive solution that can satisfied requirement. It enables to 
transfer heat flux up to 105Wm-2 between parallel plates 
characterised by confinement gap size smaller than 1 mm [1].  

Compared with unconfined pool boiling, confinement 
improves heat transfer at low heat flux but reduces heat 
transfer at high heat flux. Researches on boiling in narrow 
horizontal spaces began in the 70’ [2] [3] for saturated water 
at atmospheric pressure. It was found that heat transfer 
increases significantly at low heat flux when the gap size 
becomes smaller than the bubble detachment diameter. The 
preliminary results have been confirmed with different highly 
wetting fluids like FC72 [4] and FC87 [5], and pentane [1]. 
For subcooled conditions, the effect of the confinement is 
opposite to that for saturated boiling (an increase in the 
confinement cause a reduction in the heat transfer coefficient) 
[6]. In the same way, higher heat transfer coefficients for 
mixtures of binary water/ethylene-glycol than for pure water 
are observed in confined configurations because of the change 
in some fluid properties implying a decrease in the bubble 
diameter. The mass diffusion process and the increase of the 
fluid viscosity are considered as beneficial phenomenon to 
limit heat transfer deterioration at high heat flux.  

Unsteady boiling occurs when a preference vapour 
evacuation direction exists, and when the gap size is closed to 

the capillary length. The frequency of the unsteady boiling 
cycles depends on two characteristic times: the feeding time 
and the expansion time, the expansion time being the 
predominant time during the cycle [8]. 

Different correlations have been developed to describe heat 
transfer during natural circulation boiling of saturated liquids. 
None of them seems to be able to predict heat transfer when 
the conditions are significantly different from the one for 
which the correlation have been developed. This may be 
attributed to the fact that none of them properly takes into 
account the heat transfer mechanism : heat transfer 
enhancement is due to the evaporation of thin liquid films 
formed downstream liquid slug moving in the confined space 
(local heat transfer coefficient is then typically on the order of 
several times that of the liquid slug).  

The presence of the evaporating film located between the 
squeezed bubble and the walls has been pointed out using an 
interferometer device [9]. The thickness of the liquid film δ0 at 
the base of the travelling meniscus has been estimated by 
using an inverse heat conduction method for bubbles growing 
between two horizontal discs [10]. It depends on the gap size, 
the displacement velocity of the interfaces and the physical 
properties of the liquid. For low Bond numbers defined as the 
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ABSTRACT  
 

 
The purpose of this work is to develop an axi-symmetric two-phase flow model describing the growth of a single bubble 

squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. 
Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid 

films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue 
correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane 
bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and 
the kinetic limit of vaporisation are studied.  

The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of 
the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced 
by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible 
except at the early stages of the bubble growth. 
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The most promising way to predict heat transfer in 
confined configuration seems to develop two-phase flow 
models describing the transient variation in local heat transfer 
coefficient during the passage of elongated bubbles. Thom et 
al [11] developed such a model for flow boiling in 
microchannels (three-zone model). The model shows the 
strong dependency of heat transfer on the bubble frequency, 
the minimum liquid film thickness at dryout and the liquid 
film formation thickness.  

The purpose of this work is to develop an axi-symmetric 
two-phase flow model describing boiling between a horizontal 
heated upward-facing disc and an unheated surface placed 
parallel to the heated surface. This paper concerns the growth 
of a single bubble in the narrow horizontal space. The model 
is applied to pentane bubble growth. The influence of the gap 
size, the initial temperature of the system, the thermal 
effusivity of the heated wall and the kinetic limit of 
vaporisation are studies.  

HEAT TRANSFER MODEL 

The model developed aims at giving an insight into the 
mechanisms controlling nucleate boiling heat transfer in a 
narrow gap formed by horizontal and parallel disks. A perfect 
case (Figure 1) lending itself easily to theoretical analysis is 
considered: a single bubble grows from a nucleation site 
located at the centre of the upward facing heated wall. The 
confinement wall constraints the bubble growth. The 
phenomenon under concern is assumed to be axisymmetric. 
Heat transfer in confined boiling is mainly controlled by liquid 
layers formed on the walls. Thin layers thickness and length 
depend on local phase change and bubble growth rate. 
Therefore, knowledge of instantaneous quantities such as 
meniscus location and velocity, wall temperature field and 
vapour pressure and temperature, is required to give a 
physical picture of the phenomena involved in the flattened 
bubble growth. 

 
Fig. 1 :Geometry of the system. 

 
Model assumptions 

The model is based on the following assumptions: 

1)  All phenomena taken into account are axisymmetric  
2)  Body forces are neglected  
3)  The heated block is insulated so that lateral heat losses are 

negligible  
4)  Thermodynamic equilibrium prevails in the vapour phase. 

Its behaviour is well described by ideal gas law  
5)  Velocity profile in the liquid phase is parabolic and 

described by a 2nd order polynomial  
6)  Heat flux transferred by convection in the liquid slug 

(upstream from the meniscus) and the vapour slug (dry 
zone) are negligible.  

7)  The confinement wall is adiabatic 
8)  The temperature of liquid vapour interfaces is equal to 

vapour temperature except at the inferior microfilm 
interface where an interfacial resistance is taken into 
account.  

Heat and mass transfers at the liquid vapour interfaces are 
determined using the kinetic theory of gases. The theoretical 
net flow-rate of molecules that can leave an interface during 
vaporisation process or can be cached by the liquid phase 
during condensation process is limited. The amount of 
molecules that is really submitted to phase change can be 
determined from this theoretical limit using an 
accommodation coefficient α. Τhe maximum heat flux that 
can be transferred at the interface and thus the interfacial heat 
transfer coefficient at the interface hlim is deduced from this 
coefficient (Carey ()) 
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hlim is very high and interfacial resistance 1/hlim can be 

neglected most of the time (this comes to consider a imposed 
temperature condition at the interface) excepted when heat 
transfer catch up with the upper limit. In the present case, this 
limit can be reached in the vicinity of the triple line when the 
depth of the liquid film δ(r,t) tends to zero and is submitted to 
heat flux.  

Mass and momentum balances are applied to the liquid ring 
enclosed between the meniscus of the growing bubble and the 
external cylindrical surface of the confined space (the density 
ratio between the vapour and the liquid phases is negligible 
ρv/ρl <<1 ; The amount of liquid trapped between the bubble 
and the walls is negligible (δ << s)). 

 
Mass balance 

Mass balance yields to the following equation: 
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Where r i(t) and ),( 0 tRu  are the instantaneous meniscus 

position and instantaneous liquid mean velocity at the domain 
external frontier, respectively.  

 
Momentum balance 

Pressure difference between vapour and liquid outside the 
confined zone constitutes the driving force. The drag force 
acting on the liquid is easily calculated from assumption (5) 
and the no slip condition at the walls. The pressure drop 
through the meniscus involved by capillary action is deduced 
from the bubble curvature (meniscus is assumed to be a half 
torus) and the fluid surface tension. A singular pressure drop 
at the domain external frontier (section enlargement) is also 
taken into account.  
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Liquid ring momentum temporal variation is equal to the 

sum of forces acting on the fluid. The momentum equation 
radial component is simplified using Equation (1) which 
yields: 
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This second order differential equation gives the bubble 

radius evolution.  
 

Energy balance 

Vapour mass and pressure inside the bubble are deduced 
from the energy balances over the entire liquid vapour 
interface. Three different zones are considered: the lower 
liquid film deposed on the heated surface, the upper liquid 
film that covered the confinement plate and the lateral 
meniscus.  

Vaporisation occurs on the lower film. The meniscus and 
the upper liquid film are submitted to condensation or 
vaporation depending on the temperature difference between 
the saturated vapour and the liquid.  

The depth of the liquid films deposed at the base of the 
meniscus on the heated surface and on the confinement plate 
are determined using the correlation proposed by Moriyama et 
Inoue [10] 

 
Phase change at the lower liquid film  
The liquid film deposed on the heated surface is supposed 

to be stagnant. The liquid used (pentane) is a very highly 
wetting fluid (contact angle for 1 bar θ < 5°). Liquid-vapour 
surface energy is not sufficient to break the liquid film and 
form droplets on the wall. Temperature at the interface is 
equal to the saturated temperature except in the closed vicinity 
of the triple line. Moreover the surface tension variation with 
temperature is very small (∆σ ≈ 10-5 Nm-1k-1). Therefore 
Marangoni effects can not lead to liquid motion.  

Let’s have a look to the heat transfer within the liquid film 
deposed on the heated surface. The maximun depth of the 
liquid film deposed by the bubbles on the surfaces is           
δcar ≈ 10 µm. The maximum heat flux that can be transferred 
at the interface during the vaporization process is about     

carq& ≈ 106 Wm-2. The characteristic time tcar needed to 

evaporate the liquid film in extreme conditions is about 
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Therefore it is reasonable to consider the thermal inertia 
negligible (heat transfers within the liquid film are controlled 
by conduction); Heat flux transferred from the wall to the 
liquid film is entirely used to vaporize the liquid. Thus, the 
film thickness evolution, at location r, during interval time dt, 
is given by: 
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The amount of vapour supplied by an axisymmetric surface 
element during dt is deduced from (3):  
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Phase change at the meniscus 
The interface is assumed to be at the vapour saturation 

temperature corresponding to the pressure inside the bubble. 
Liquid motion close to the meniscus is neglected. Heat flux 
transferred between the liquid and the vapour phase is 
determined from non stationary heat conduction problem 
inside the surrounding liquid. 

Phase change is assumed to be uniform, therefore isotherms 
are concentric. The confinement width is about 1mm whereas 
the sample radius is equal to 15mm. Thus, as the bubble 
grows, the bubble curvature 1/r decreases and rapidly and 
becomes much smaller than the meniscus curvature 2/s. For 
convenience, the effect of bubble curvature is neglected which 
makes the heat conduction problem one-dimensional.  

Moreover, meniscus is considered to be a half torus and the 
depth of the liquid films are not taken into account (Fig.2).  

The amount of vapour vaporized or condensed during time 
dt is given by: 

lvmenmenmen hdmSdtq ∆⋅=⋅⋅&  (8) 

 

 

Fig.2: Bubble and meniscus radii 

 
Phase change at the upper liquid film  
As for the meniscus, evaporation or condensation occurs on 

the upper liquid film. The confinement wall is assumed to be 
adiabatic. Transient effects are negligible. Therefore, the film 
temperature is uniform and equal to interface temperature 
(which is equal to the saturation temperature, according to 
assumption 8).  
At a given time, meniscus and inferior microfilm contribution 
to the vapour phase, during dt, is calculated (Equations (6) 
and (8)). New thermodynamic conditions in the bubble are 
deduced. The contribution of the superior microfilm is not yet 
taken into account; thus, the bubble is in a fictive state. An 
enthalpy balance over the fictive system constituted by the 
superior microfilm and the vapour enables to calculate the real 
thermodynamic conditions in the bubble at the final state, 
which yields the number of vapour moles produced by the 
superior microfilm during dt.  
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Vapour temperature and vapour pressure in the bubble 

The number of vapour moles n(t) inside the bubble is 
determined using energy balances. Considering the liquid-
vapour interfacial area, the vapour phase inside the bubble is 
assumed to be in saturated conditions. The temperature and 
the pressure of the saturated vapour are determined using the 
ideal gas law and the relation between the temperature and the 
pressure in saturated condition (expressed by mean of a 2nd 
order polynomial).  
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The vapour temperature and thus the temperature of the 
interface for the upper film and the meniscus are determined 
by the following equation:  
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The meniscus is assumed to have a toric shape. The volume 
of the liquid films are neglected (Vfilm/VV ≈ 1%). The pressure 
is deduced from Equation (9).  

 
Sample – bubble Thermal coupling  

The energy needed for the bubble growth is removed from 
the surrounding liquid and from the heated sample. The 
transient heat conduction problem within the heated bloc is 
solved and coupled with the energy balance governing the 
vaporisation of the lower liquid film.  

The thermal coupling between the sample and the 
vaporisation of the lower liquid film is expressed using a heat 
transfer coefficient (12): 
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The heat transfer coefficient hinf(r,t) is used as a boundary 
condition to the no stationary heat conduction problem inside 
the heated block.  

 

Fig 3: Sample mesh and boundary conditions 

Heat conduction equation inside the heated block 

Considering the axi-symmetry of the problem, heat transfer 
within the heated bloc is determined by solving equation (13) 
(non stationary heat conduction equation in cylindrical 
coordinate): 

 









∂
∂+

∂
∂+

∂
∂=

∂
∂⋅⋅ 2

2

2

2 1
z

T

r

T

rr

T

t

T
C sps λρ  (13) 

The lateral side of the bloc is assumed to be adiabatic. 
Considering the symmetry of the problem, heat flux along the 

axis is set equal to zero. Desired heat flux can be imposed at 
the block bottom. The problem is closed with the heat transfer 
coefficient controlling the flux transferred to the fluid.  

The scheme used to solve the aforementioned equations is 
presented in figure 4. 

 

Fig. 4 : Scheme used for governing equations resolution 

Initial conditions 

The calculation starts at the end of the spherical growth of 
bubble in the centre of the confinement place. The nucleation 
site is supposed to be located on the insulated confinement 
plate. The pressure inside the bubble is supposed to be equal 
to 2σ/s (inertial effects are neglected). Vapour is supposed to 
be in saturated conditions. Heat flux required for the bubble 
growth is removed from the surrounding liquid. The 
temperature within the thermal boundary layer is assumed to 
vary linearly with the distance r (Figure 5). The thickness of 
the boundary layer is determined using energy balance.  

 
Fig. 5: Initial conditions 
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NUMERICAL TREATMENT OF THE GOVERNING 
EQUATIONS 

Heat conduction equation inside the heated block 

Equation (13) is solved using a finite difference scheme 
(alternate direction implicit method). The grid is uniform 
along the radial direction whereas a grading scheme is used in 
the vertical direction: cells are thinner near the wall where an 
important temperature gradient is expected. The program has 
been validated with different well known steady and unsteady 
solutions.  

Heat conduction in the liquid ring 

Meniscus temperature is equal to vapour temperature 
(assumption 8). The domain meshed is so large that at the end 
of the bubble growth, thermal disturbance has not reached the 
domain end. Therefore, the related boundary condition is not 
of primal importance: it was chosen to set the temperature.  

Due to the simplifications previously presented, the finite 
difference discretized non-stationary heat conduction equation 
is obtained from an energy balance over a control volume. 

As the bubble grows, liquid distribution evolves. Therefore, 
the mesh is adapted at each time step in order to take the 
liquid shape evolution into account.  

Momentum equation 

It is solved using fourth order Runge Kutta method. 
Implementation reliability is tested by solving simple second 
order differential equations having analytical solutions. 

 

RESULTS 

The axi-symmetric model is applied to pentane bubble 
growth between a horizontal heated upward-facing disc (5mm 
depth and 30 mm diameter) and an unheated downward-facing 
disc placed parallel to the heated surface. The pressure of the 
system is 1bar. The influence of the gap size, the initial 
temperature of the system, the thermal effusivity of the heated 
wall and the kinetic limit of vaporisation are studied. 

First of all, the spatial and the time evolution of the 
characteristic variables of the problem are studied for a 
reference condition: The bubble growths between the heated 
copper bloc and the insulating surface; the gap size is 
s=0.8mm (s/Lcap=0.5); the initial superheat of the system 
(heated bloc and liquid) before onset of boiling is equal 
∆Tsatinit=20K. The accommodation coefficient used to 
determine the interfacial heat transfer coefficient at the 
interface is fixed to α = 0.02.  

The growth rate of the bubble increases with time (Figure 
9a). This tendency is due to the increase of the thickness of 
the liquid film δ0 at the base of the travelling meniscus, and 
thus to the length of the liquid film between the bubble and the 
heated surface (in the present case, the modified Bond number 
Bo* is smaller than 2. The thickness of the liquid film δ0 at the 
base of the travelling meniscus is controlled by the capillary 
number. It increases with the increase of the growth rate of the 
bubble). 

The heat flux transferred from the heated surface to the 
fluid depends on the depth of the liquid film. It becomes 
maximum near the triple line. Heat transfer coefficient is equal 
to the inverse of the interface thermal resistance at this 
location (Figure 6).  
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temperature of the heated surface as a function of the radius 
for a meniscus position r= 13 mm (s=0.8mm ; ∆Tsat ONB = 
20K ; copper heater ; α = 0.02) 
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Fig. 7: Distribution of the time derivative of the vapour mole 
number from the meniscus, the lower and the upper liquid 
films as a function of time (a : early stages ; b entire cycle) 
 

The vaporisation rate at the interface of the liquid film is 
very high and the thermal interface resistance have to be taken 
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into account. The interface superheat is enclosed between 4K 
at the base of the meniscus and 18.8K at the triple line (Figure 
6). The vapour is mainly generated on the meniscus interface 
at the early stages of the bubble growth. The vapour 
production on the lower liquid film becomes rapidly higher 
than the other interfaces (Figure7). The vapour flow-rate from 
the meniscus is affected by the pressure increase at the early 
stages of the bubble growth (figure 9.c) and the thermal 
boundary layer increase into the liquid. The vapour flow rate 
(vaporisation or condensation) on the upper liquid film is 
always negligible. 

Because of the large diffusivity of the copper, the 
maximum temperature drop of the heated surface is about 
1.2K at the triple line. The higth growth rate of the bubble 
limits the depth of penetration of the cooling within the heated 
bloc. For the reference case, this length is about 

mmatT 5.1=≈δ  (Figure 8). The heat condition imposed at 

the base of the liquid film rather corresponds to an imposed 
temperature than an imposed heat flux.  
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Fig.8: Distribution of the temperature within the heater 
(s=0.8mm ; ∆Tsat ONB = 20K ; copper heater) 

 
The value of the accommodation coefficient affects the 

bubble growth when its value is lower than 0.02 (the bubble 
growth is directly controlled by the vapour production except 
at the early stage of the bubble growth) (Figure 9.a ; 9.c).  
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Fig.9a : Time evolution of the meniscus radius for different 
accommodation coefficient (s=0.8mm ; ∆Tsat ONB = 20K ; 
copper heater) 

 
For higher values of α, the friction forces play also an 

important roleo the bubble growth and thus on the depth of the 
liquid film at the base of the bubble. The temperature drop at 

the interface strongly depends on thermal interface resistance. 
It should be equal to the liquid superheat at the triple line for 
accommodation coefficient equal to unity. The time spatial 
discriminations are not high enough to describe it (Figure 9.b). 
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Fig. 9b: distribution of temperature drop of the heater surface 
when the meniscus reach the limit of the confinement space 
for different accommodation coefficient (s=0.8mm ; ∆Tsat ONB 
= 20K ; copper heater ; r i = 0.015m) 
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Fig. 9c: Time evolution of the vapour pressure for different 
accommodation coefficient (s=0.8mm ; ∆Tsat ONB = 20K ; 
copper heater) 

 
The bubble growth duration doesn’t vary linearly with the 

initial liquid superheat for different reasons (Figure 10.a). 
First of all because the depth of the liquid film at the base of 
the bubble, and thus the amount of liquid deposed on the 
heated surface, increase with the bubble growth rate increase. 
Next because the inertia forces (at the early stages) and the 
viscous forces are opposed to the bubble growth (Figure 10.c). 
And finally because the thermal effect that affects the surface 
temperature and thus the heat flux transferred to the fluid is all 
the more important since the growth rate is important 
(diffusion effect) (figure 10.b) 
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Fig. 10a: Time evolution of the meniscus radius for different 
system superheat at the onset of boiling (α = 0.02; s = 0.8mm; 
copper heater) 



 
 

0 0.005 0.01 0.015 
-1.6 

-1.2 

-0.8 

-0.4 

0 

r (m) 

∆T
 =

 T
p 

- 
T

pi
ni

t (
K

) 

  

  

∆Tsat=5K 
∆Tsat=10K 
∆Tsat=15K 
∆Tsat=20K 
∆Tsat=25K 
∆Tsat=30K 

 
Fig. 10b: Distribution of temperature drop of the heater 
surface when the meniscus reach the limit of the confinement 
space for different system superheat at the onset of boiling     
(α = 0.02; s = 0.8mm; copper heater; r i = 0.015m) 
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Fig. 10c: Time evolution of the vapour pressure for different 
system superheat at the onset of boiling (α = 0.02; s = 0.8mm; 
copper heater) 

 
The bubble growth rate duration is all the most small than 

the gap size is small (Figure 11a). The growth duration varies 
quasi linearly with the gap size for s > 0.1. The velocity 
effects on δ0 are partially compensated by the capillary effects. 

41.0
0 .. UsCst=δ . The increase of δ  with the increase of the gap 

size lead to the increase of the thermal resistance of the liquid 
film, and thus to the vaporisation process.  

The viscous forces become significant and control the 
vapour growth when the gap size becomes too small                   
(s < 0.2mm) (Figure 11.c). The viscous forces depend on two 
effects: the velocity gradient (which increases with the bubble 
growth rate increase and gap size reduction); the size of the 
surface located under the liquid annulus. The significant 
reduction of this surface explains the reduction of the pressure 
at the end of the bubble growth. 
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Fig. 11a: Time evolution of the meniscus radius for different 
confinement gap size (α = 0.02; ∆Tsat ONB = 20K; copper 
heater) 
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Fig. 11b: distribution of temperature drop of the heater 
surface when the meniscus reach the limit of the confinement 
space for different confinement gap sizes (α = 0.02; ∆Tsat ONB 
= 20K; copper heater) 
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Fig. 11c: Time evolution of the vapour pressure for different 
confinement gap size (α = 0.02; ∆Tsat ONB = 20K; copper 
heater) 
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Fig. 12a: Time evolution of the meniscus radius for different 
heater blocs (α = 0.02; ∆Tsat ONB = 20K; s = 0.8mm) 
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Fig. 12b: Distribution of temperature drop of the heater 
surface when the meniscus reach the limit of the confinement 
space for different heater blocs (α = 0.02; ∆Tsat ONB = 20K;    
s = 0.8mm; ri = 0.015m) 

 



 
The effect of the effusivity on the bubble growth is very 

limited except for low effusivity (figures 12a; 12b)). The 
effects of the thermal diffusivity appear on the distribution of 
temperature drop on the heater surface. The maximum 
temperature drop of the heated surface is about 1.2K using 
copper whereas it reaches 16K using Pyrex (figure 12b) 
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Fig. 12c: Time evolution of the vapour pressure for different 
accommodation coefficient (s=0.8mm; ∆Tsat ONB = 20K; 
copper heater) 

CONCLUSION 

An axi-symmetric two-phase flow model describing the 
growth of a single bubble squeezed between a horizontal 
heated upward-facing disc and an insulating surface placed 
parallel to the heated surface has been developed. The early 
results show that for high diffusive material, the heat condition 
imposed at the base of the liquid film look imposed 
temperature rather than imposed heat flux. The interface 
temperature of the heated liquid film is highly superheated. 

NOMENCLATURE 

Bo Bond number 
Bo* Modified bond number 
Ca Capillary number 
h Heat transfer coefficient, W m-2 K-1 
m Mass, kg 

M  Molar mass, kg mol-1 
N mole numbre 
q&  Heat flux, Wm-2 

r Radial coordinate, m 
R Sample radius, m 

R  Ideal gas constant, J K-1 mol-1 
s Confinement gap, m 
S Area, m2 
t Time, s 
u Liquid velocity in the radial direction, m s-1 

V Volume m3 
z Vertical coordinate, m 
α Accommodation coefficient 
λ Thermal conductivity, W m-1 K-1 
δ Layer thickness, m 
∆hlv Latent heat, J kg-1 
µ Dynamic viscosity, Pa s 
ν Viscosity, m²s-1 
ρ Density, kg m-3 

σ Surface tension, Nm 
 
Subscripts, superscripts 
0 Initial  

i Meniscus base  
inf Inferior microfilm  
je Joule effect  
k kth iteration  1,2 Bubble main radii  
l Liquid  
lim Limit  
men Meniscus  
s Sample  
sat Saturated  
v Vapor  
wall Sample superior wall   
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