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Abstract  
The heat transfer during the short-circuit test of an OPGW 
manufactured with aluminum tube and galvanized wires, has been 
investigated by many authors. In spite of the fact the temperature 
gradient in the aluminum wires can be neglected, it is shown in 
this paper the temperature gradient have a significant effect on the 
cooling of the aluminum tube. The present work reports the 
experimental results and the predicted temperature results 
obtained from a general analytical solution of the heat conduction 
equations of the tube and the wires, for a cable Pirelli OPGW-
SM-16.4 48 FO (10.2mm O.D. aluminum tube – 13 galvanized 
wires φ 3.12mm). The analytical solution is expressed in terms of 
the thermophysical properties of the materials of the tube and the 
wire, as well as the geometrical design parameters of the cable. 
The thermal contact resistance between the tube and the wires is 
also taken into account.  
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1. Introduction 
The short-circuit current carrying capacity of an OPGW conductor 
is thermally limited by maximum temperatures to prevent annealing 
of the aluminum wires and bird-caging of the conductor. The 
thermal response of the conductor is dependent of the product 

ctI ∆2 , of the effective current intensity and the time interval of the 
short-circuit. The maximum temperatures achieved by the aluminum 
tube and the strand wires depend not only on this term, but also 
depend on the thermal properties of the materials, the electric 
resistance of the conductor components, the geometry of the 
conductor, as well as the contact thermal resistance between the 
strand wires and the aluminum tube. Figure 1 illustrates a picture of 
the aluminum tube of the OPGW analyzed here. The discontinuous  

 

Figure 1. Aluminum tube of the OPGW 

strips seen in the surface of the tube are due to the effective 
mechanical contact between the strand wires and the tube.  

In the case of OPGW made of galvanized steel wires, most part of 
the electric current is oriented to the aluminum tube. Therefore the 
aluminum tube achieves the maximum temperature peak while the 
strand wires heat up slowly. The temperature difference between the 
tube and the wires, as well as the fact that the aluminum linear 
thermal coefficient expansion be greater than the linear thermal 
expansion coefficient of the steel wires, lead to thermal stresses in 
the aluminum tube. These induced stresses may cause the tube 
creeping and therefore, the optical fibers damage. The fibers usually 
reach their highest temperature much later than the aluminum tube 
reach its highest temperature, which means that the equivalent radial 
thermal conductivity of the packed fibers is much smaller than the 
thermal conductivity of the aluminum. Therefore as a first 
approximation, the heat conduction on the fibers can be neglected, 
in comparison to the heat conduction in the metallic components of 
the conductor. 

In designing an OPGW, one should take into account not only the 
thermal and mechanical properties of the materials of the OPGW 
components but also the size and the shape of its components. The 
present analysis focuses the study of the heat transfer of OPGW 
submitted to a short-circuit current. The analytical solution obtained 
is expressed in terms of the relevant geometrical dimensions of the 
aluminum tube and the strand wire. Dimensionless numbers are 
obtained which can be useful for OPGW design.     

2. Governing Equations 
By neglecting the temperature gradient in the aluminum tube and the 
heat transfer to the fibers, the energy balance in the tube (see Figures 
2(a) and (b)) can be expressed as,  
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where oL  is the length of the effective thermal contact surface strip 

of width ae2 , aN  is the number of wires of the strand, ak is the 

thermal conductivity of the wire material, ar is the wire radius, oR  

and 1R  are the inner and outer radii of the aluminum tube, 
respectively.  

Equation (1) can be reduced to a non-dimensional equation as 
follows, 
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Figure 2. Cross section geometry of the OPGW  
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and af  are the electrical resistance temperature-depended 

functions of the aluminum and steel, respectively, 20R  is the 

electrical resistance at 20oC and 20ρ  is the electrical resistivity at 
20oC.   

The energy balance in the wire is governed by the following 
equation 
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where aI is the current intensity in the wire. The dimensionless 
form of equation (3) is given by, 
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The boundary and interface conditions for equation (2) and (4) are 
given by  
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The initial conditions are, 
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Equations (2) and (3) are non-linear because the heat source 
parameters ip  and ap are temperature-dependent. In order to 

simplify the solution of equations (2) an (3) it is assumed that ip  

and ap are constant and evaluated at some temperature rT , which 
is determined by a numerical scheme.  

The thermal contact resistance in the interface between the wires 
and the tube is expressed by the equation, 
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or in the dimensionless form, 
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where h is the heat transfer coefficient by convection and 

aai krhB  = is the Biot number referred to the wire diameter. 
The boundary condition given by equation (9) is not assumed to 
hold for each value of the angle ϕ . In order to simplify the 

analytical solutions for aθ and iθ , condition (9) is expressed in 
terms of the following integral suggested by the Galerkin method 
[1], 
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In the present analysis only the integral for 0=n is considered. 
Furthermore, since the angle oϕ is considered to be small, 

),( τϕφ can be assumed to be independent of ϕ and therefore, 
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Instead of considering the value of aθ for each value of the angle 

ϕ in the interval ],0[ oϕ ,  ),,1( τϕθa is replaced by its average in 
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By replacing )(τθa and )(τφ from equations (11) and (12) into 
equation (10), the following equations is obtained, 

 ( ))()()( τθτθτφ iaiB −−=                (13) 

Equation (4) with the boundary conditions given by equations (5), 
(6) and (7) can be solved by the Green function method as 
described in [1,2,3]. For the above equations, the solution of 
equation (4) can be expressed by 
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or in terms of )(τθa by 
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where m
nβ is the m-th root of the derivative of the Bessel function 

of the first kind of order n=0,1,2, … . 0)( =′ n
mnJ β ; m=1,2,… 

The solution for )(τθi and ),,1( τϕθa can be obtained by the 
method of Laplace transform. The inversion of the transformed 
identities is performed by the residues theorem of the calculus of 
functions of complex variables [ ]. The solution for )(τφ can be 
expressed as follows 
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and kp is the root of 0)( =pH . 

The solution for )(τθi is given by  
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for 1>τ . 
The solution for the temperature at the center of the wire (at 

0=η ) is given by 
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for 1≤τ  
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for 1>τ . 
The average temperature amθ over the cross section of the wire is 
expressed by 
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for 1>τ . 
By inspection of equations (19)-(25) it is seen that for large values 
of time, )(τθ >

i , )(τθ >
ao , and )(τθ >

am tend asymptotically to the 

value given by iC as expressed  by equation (20). It can be shown 

that iC is proportional to the adiabatic equilibrium temperature of 
the conductor, as expected. 

3. Discussion of Results 
3.1 Predicted Results 
The analytical solution obtained here in terms of the temperature of 
the tube, is compared with the respective solution of the present 
problem, by neglecting the temperature gradients in the wires, which 
means that only the thermal capacitances of the tube and the wires 
are taken into account. The results are shown in Figure (3) for 
different values of the thermal contact resistance parameter icB , 

where 2//2 aaaacoioaic rcethBFB πρπϕ ∆== . This figure shows 

that for relatively small values of the parameter icB , the temperature 
distributions obtained from the thermal capacitance model (MCT) 
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are in agreement with the respective temperature distributions 
obtained from the present model (MGA). The smaller the values of 

icB , the smaller the effects of the temperature gradient in the wires 
on the temperature distributions of both, the tube and the wire. 
Figure (4) shows the effect of the thermal conductivity of the wire 
material on the temperature distributions, for 0.1=icB  

and 20/πϕ =o . The cases corresponding to aluminum wires and 
the fictitious case corresponding to the thermal conductivity 
coefficient equal to 1000W/moC are illustrated. The curve 
corresponding to model MCT is the limit-case for which the thermal 
conductivity is infinite.   
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Figure 3. Temperature distributions of the tube 
and the wires, for several values of icB , for the 

present model (MGA) and for the thermal 
capacitance model (MCT) 

0 2 4 6 8 10
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

θa MCT

θi MCT

θa MGA - ka=52 W/m°C
θa MGA - ka=324 W/m°C

θa MGA - ka=1000 W/m°C

θi MGA - ka=1000 W/m°C
θi MGA - ka=324 W/m°C
θi MGA - ka=52 W/m°C

Bic=1

θ

τ

 
Figure 4. Comparison of results from models MGA 
and MCT for different values of the thermal 
conductivity of the wire, for 20/πϕ =o  and 1=icB . 
Figure (5) illustrates the effect of the contact angle oϕ on the 
maximum temperature achieved in the tube, as a function of 
parameter icB . As is seen in this figure, the maximum temperature 

depends also of the size of the angle oϕ , for almost all values of 

icB . An important design parameter derived in the present analysis 
is the factor ai pp  α− , which appears in the analytical solutions 

for iθ , aθ and φ . This parameter measures the extent the current 
unbalance in the tube and the wires may increase or decrease the 
heat flux in the interface. The smaller the value of ai pp  α− , the 
smaller the maximum value achieved by the heat flux, and 
therefore the smaller the maximum temperature achieved in the 
tube. 
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Figure 5. Maximum temperatures achieved in the 
tube for different contact angles, as a function of 

the parameter icB  
The characteristic function )( pH is plotted in Figure (6) as a 
function of p . Some roots of 0)( =pH are shown in Table 1. 
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, is the sum contained in the 

brackets of the second term on the right of equation (16), for 
0=τ . This sum should be zero, since the heat flux at 0=τ  

vanishes. 

Table 1. Roots of  0)( =pH  for =icB 1 and 2 
k pk H´(pk) So 

1=icB  
1 -0.4625 40.86769 0.00093 
2 -3.65313 468.3826 0.00035 
3 -9.63242 1102.57 0.00025 
4 -14.7664 6392.291 0.00024 
5 -18.0031 1711.951 0.00021 
6 -28.365 99139.12 0.00021 
7 -28.8993 1764.909 0.00019 
8 -41.5276 3993.86 0.00018 

2=icB  
1 -0.7375 26.19427 0.00207 
2 -3.87344 151.8637 0.00037 
3 -9.87578 355.1049 0.00009 
4 -14.8284 2167.307 0.00006 
5 -18.3047 516.2231 -0.00005 
6 -28.3694 103783.5 -0.00005 
7 -29.3715 527.2273 -0.00011 
8 -41.8131 1303.227 -0.00013 
9 -45.3877 1793.717 -0.00014 

10 -49.4083 4344.281 -0.00015 
11 -57.0022 1381.912 -0.00016 
12 -64.6314 2905.68 -0.00017 
13 -73.0317 20421.91 -0.00017 
14 -74.5254 1211.448 -0.00018 
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 Figure 6. Typical plot of )( pH  
 
3.2 Experimental Results 
The cable OPGW Pirelli SM 14.6 48FO was tested in the test 
facility of the laboratory of CEPEL (Research Center of 
ELETROBRAS) in Rio de Janeiro. The conductor was submitted to 
an effective current of 10.4kA during 0.5 seconds. The temperature 
in the mid position of the tube wall as well as the temperature in the 
center of the wire was measured, by using a data acquisition system 
National Instruments – DAQCard-AI-16XE-50, SCXI (1000, 1120, 
1181, 1328 and 1203). In order to correlate the induced vibration of 
the conductor with the thermal response due to the short-circuit test, 
a traction measuring cell HBM, model S9 was utilized. 

The experimental results are plotted in Figures (7) and (8). The 
temperature distributions iT and aoT are calculated by equations 

(19), (20), (21) and (22), where by definition of θ , )1( ioi TT θ+=  

and )1( aooa TT θ+= . The parameters ip  and ap were calculated at 

an equivalent reference temperature rT . This temperature is 
determined by comparing the numerical results obtained form the 
present model with the numerical results obtained from the solution 
corresponding to the thermal capacitance model (MCT), by 
considering temperature-dependent electric resistances. The non-
linear equations were solved by the Runge-Kutta method. Details 
are found in [4]. The present solution is plotted in Figure (7) for 
different values of the parameter icB .  
It is seen in Figure (7) that the best agreement of the present solution 
with the experimental results is fond for icB around unity. The 
present model is shown to be able to predict the maxim temperature 
for 1=icB . However, the results of the present model deviates 
from the experimental data in the cooling period of the short-circuit 
test. The solution presented here is a rather simplified one, and 
therefore is not appropriate to describe completely the heat 
conduction effects in the OPGW analyzed here. On the other hand, 
one can conclude that the contact thermal resistance may be affected 
by the mechanical deformations during the cooling of the conductor. 
Figure (8) may be helpful to explain the mechanical effects 
mentioned.  
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The large amplitude of the measured traction may be correlated to 
the relative longitudinal displacement between the wires and the 
tube. Due to the difference between the coefficients of thermal 
expansion of the aluminum and the steel, and because of the large 
temperature difference between the wires and the tube during the 
cooling period, the contact strips existing in the interface between 
the wires and the tube may change in size, thus increasing the 
thermal resistance. Since the present solution does not allow for 
different values of icB for the heating and the cooling period, it is 

not appropriate to investigate the effect of the variation of icB with 
time. In order to minimize this limitation, a more general model is 
presently being developed by the authors. This model takes into 
account higher order terms of the Galerkin boundary condition 
given by equation (10), as well as the variation of icB with time in 
the cooling period. The model mentioned is believed to be adequate 
for the parameter estimation of icB  and oϕ . 
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Figure 8. Plot of the traction force measured by 

the traction cell during the short-circuit test 
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4. Conclusions 
The present paper reported an analytical solution for the temperature 
distribution of OPGW submitted to a short-circuit current. The 
results presented here are expressed in terms of dimensionless 
parameters, which may be of practical interest for the thermal design 
of OPGW. The predicted temperature distribution agrees with the 
experimental data for the heating period. However it is in 
disagreement with the experimental results for the cooling period. 
Further work is needed in order to characterize the contact thermal 
resistance between the wires and the conductor tube, in terms of 
parameters icB and the effective contact angle oϕ . 
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