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ABSTRACT 
 
Outdoor collector tests are inherently performed under 
variable weather conditions. Whereas for the steady-state 
collector test SST, ISO 9806 strong restrictions are set for 
the weather conditions for usable data sets or samples, the 
ambient conditions of the quasi-dynamic collector test QDT, 
EN12975 are allowed to be more variable. This results in 
shorter collector test time, but could have drawbacks for the 
uncertainties caused by the reproducibility of the test results, 
i.e. the collector coefficients (or also called collector 
parameters) stability of the collector model, as well as for 
the estimated power and energy with this model. As the 
weather conditions are never the same within several tests, 
outdoor collector tests are not repeatable but reproducible. 
Like the QDT permits to use data with more variable 
weather conditions, it is thus may be expected, that the 
uncertainties of the collector parameters gained by a QDT 
test are superior to those from the SST test. On the other 
hand the model of the SST is only a reduced collector 
model. All optical and thermodynamic effects that appear 
during the application of a solar collector are not managed 
with that reduced model. Under this consideration it is 
possible, that the result of the SST collector test may 
estimate the produced energy with more uncertainty than the 
QDT. We estimate in this paper the total uncertainty and the 
stability of the quasi-dynamic and the steady state test 

methods with the objective to proof which of methods is the 
most reliably one. We evaluate the collector parameters and 
their uncertainties of a covered collector using both, the SST 
and QDT test methods. As basis, a large data set from 3 
months of operation is applied. This set is then separated in 
various single data sets fulfilling either the conditions of a 
complete steady-state or a complete quasi-dynamic test. 
Hereby several sets for the case of the QDT, and one for the 
steady-state test one set could be identified. From each of 
the tests the collector parameters and their uncertainties are 
calculated. This allows the comparison of both, the model 
coefficients and their uncertainties. It is than tested with 
statistical methods to what extend the reduced SST model is 
sufficient to extract collector coefficients that are usable for 
the calculation of the long term energy gain of the 
collectors. We use as a second result statistical procedures 
to test whether the coefficients extracted from the QDT data 
sets of each of the QDT collector tests have statistical 
equality within 95% of confidence if we compare the same 
coefficients from different tests. Proofing statistical equality 
is in coherence with model stability of a collector model. 
The Energy production simulated using the SST and QDT 
models are compared with the measured energy during the 
time period of 2 month. Finally the total uncertainties for 
long term energy estimation of the SST and the QDT tests 
are quantified. 
 



1.  INTRODUCTION 
 
The main goal of this article is to analyze with statistical 
methods whether the extended model of the quasi-dynamic 
test according to EN12975 [1], [5] is able with the same 
uncertainty or with lower uncertainty to estimate the 
collector coefficients and the energy produced by the 
collector using the QDT model and data set than the model 
and data set of a steady-state test as described in 
EN12975[1], ISO 9806[2], ASHRAE 93-86[3] and NBR 
10184[4]. For this, the collector coefficients from a steady-
state test- i.e. the basic collector coefficients η0, k1 and k2 - 
are considered identical to those obtained form a QDT 
procedure. 'Identical' is defined here as identical within a 95 
% confidence limit (see ISO-VIM [19]) taking into account 
the uncertainties of the parameter identification procedures. 
The QDT and the SST data sets were selected from the 
amount of data set of two month. We compare the 
coefficient set gained by the SST data set with the 
coefficients extracted by the QDT data sets and explicate 
than how significant coefficient variations can be detected if 
the reduced SST model is substituted by a full QDT model. 
We also present the analyses whether quasi-dynamic test 
according to EN12975 [1], [5] yields reproducible results. 
This analysis is based on the coefficients and the respective 
uncertainties gained from several QDT tests. We present a 
methodology that can check which of the two test results are 
identical within a given confidence interval if we use two 
independent data sets of the QDT. We estimate the 
uncertainties of the collector power and energy as well as 
for the bias error of that energy. The methodology is applied 
to the models obtained from the QDT and the SST 
regressions. As prerequisite for the following discussion the 
models for the collector performance used in both tests are 
described in the next section. This is followed by a 
description of the method used to derive the collector 
coefficients and their uncertainties. Normalized efficiency 
curves with his uncertainties of the SST and QDT tests are 
drawn and compared.  
 
 
2.  COLLECTOR TEST RIG 
 
The aim of the collector model is to describe its efficiency 
under the environmental and operation conditions given by 
the incoming solar radiation, the air temperature and the 
inlet and outlet collector temperatures of the solar collector. 
To derive the parameters of the model according to different 
standards, the collector performance is determined in a test 
rig (see figure 1). Like in that figure you can notice, the 
cryostat holds the mass flow and the temperature constant 
and the radial ventilator helps to create a constant air speed 
over collector window. 
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Fig. 1: Schematic diagram of the test rig for the quasi-
dynamic and the steady-state collector tests, where the 
following quantities are measured: (1) Inlet temperature: 
temperature of the fluid flowing into the collector, (2) Outlet 
temperature: temperature of the fluid leaving the collector, 
(3) Ambient temperature, (4) Air speed: speed of the air at 
the collector front cover, (5) Global radiation: Total solar 
radiation measured in the collector plane, (6) Diffuse 
radiation measured in the collector plane, (7) Flux meter: 
measurement of the volume flow rate through the collector.  
 
 
3.  MODEL EQUATIONS 
 
The ISO [2] and the Euro [1] standards establish the 
following collector models for the determination of the 
collector coefficients using the measured, selected, averaged 
and combined data of the collector test. 
 
3.1 Collector model of the steady-state test
 
For the steady-state collector test model the efficiency of the 
collector is expressed by: 
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Where moQ& is the estimated collector power per collector 
aperture area A, estimated by the model and is given in units 
of W/m2. is determined as function  of the variables 
X

moQ& Ŷ

1, X2 and X3 with coefficients a1, a2 and a3 (see eqn. 1). The 
coefficients have to be determined by a regression 



procedure as described below, using the deviations of 
estimated power and measured power – both taken 
per collector aperture area - as criteria. In the regression 
procedure is set as goal for the estimator . It  is 

measured by , T

moQ& meQ&

meQ& Ŷ

ATTCm inoutp /)( −××& in being the inlet 
and Tout outlet temperature,  is the mass flow derived 
from the volume flow and the temperature of the fluid that 
passing the flow meter, C

m&

p the heat capacity of the fluid (in 
our case water) having the units J/kg K and which depends 
on the mean fluid temperature of the collector Tm. The 
variables X1, X2 and X3 are derived from measured 
quantities: G being the global radiation (measured in W/m2), 
∆T = Tm – Ta the difference between the average collector 
temperature Tm = (Tin + Tout) / 2, and the ambient 
temperature Ta. The simplified model sets the average 
collector temperature Tm equal to the mean fluid temperature 
of the collector calculated by . All measured 
quantities are taken from the experiment as mean values in 
15 minutes intervals. With the regression variables X

2/)( inout TT +

1, X2 
and X3 (see equation (1)) and the dependent variable all 
defined by the measured values, we set a linear regression 
problem, to find the regression coefficients a

meQ&

1, a2 and a3. 
These coefficients can be identified as: η0 which indicates 
the dimensionless zero loss coefficient, k1 which is a heat 
loss coefficient estimated by the model having the units 
W/m2K and k2 which is another heat loss coefficient 
estimated in W/m2K. The heat loss coefficients are always 
negative. 
 
3.2 Quasi-dynamic collector model 
 
To allow for the use of data taken under quasi-dynamic 
conditions the model parameters and the model equation 
have to be modified accordingly to equation (2). Where a1 
to a6 are the regression coefficients and X1 to X6 are the 
regression variables, all together used in the multiple linear 
regression of the quasi-dynamic test. Gd is the diffuse 
radiation, G is the global radiation and Gb is the beam 
radiation calculated by the relation Gb = G - Gd, all 
measured in units of W/m2. 
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The average collector temperature Tm, the difference 
between collector mean and ambient temperature ∆T and the 
measured collector power per collector area are derived 
in the same way as in the steady-state collector model. Here 
the mean values of the measurable quantities are taken from 
the samples of the experiment in 5 minutes intervals. The 
coefficients to be determined by the regression are: a

meQ&

1 that is 
the zero loss coefficient of the QDT given by η0, a2 given 
by η0

 x b0 where b0 is the factor to scale the power losses 
modeled by the incident angle modifier function               
1/cos(θ )-1, used for scaling of that beam radiation part a2 x 

X 
2 that the collector can not transform in heating energy 

because of the absorption and reflection losses, where θ is 
the incidence angle that is the angle between the normal 
position of the sun to the collector and the position when the 
mean value of a sample is calculated, a3 given by η0 x Kθd 

where Kθd is the mean incident angle modifier considered 
for diffuse radiation, a4 = k1 and a5 = k2, are the heat loss 
coefficients estimated respectively in units of W/m2K and 
W/m2K2 and k3 is the coefficient that determines the mean 
heat capacity of the collector together with the heat capacity 
of the water within the collector estimated in units of J/m2K. 
 
 
4. REGRESSION ANALYSIS 
 
The sets of the collector coefficients, gained by the linear 
regression show uncertainty, that has to be specified. The 
respective procedures to analyze the uncertainties of the 
estimates in a linear regression gained by the classical least 
square method are e.g. given by ISO-GUM[20]. The 
regression technique, that is used to derive both, the 
regression coefficients and their uncertainties for the SST 
and the QDT tests are shown in [6]-[8] and in [9]-[11], 
respectively. Based on these procedures, we can also 
calculate the uncertainties of the estimates of the collector 
power and subsequently, the respective energy production 
of the collector. 
 
4.1 Estimation of the regression coefficients 
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The basis for the regression procedure is given by the 
equation for the error sum of square SSE (see eqn.(3)) of the 
modeled collector power as compared to the measured moQ&



power , which has to be minimized, where ∈ is the 
difference or error between this two power values. Here       
j = 1….k is the number of the used model components in the 
multiple linear regression and i = 1…n counts the number of 
the used mean values (obtained from the samples of the 
experiment) within a regression. For the SST k is 3, and for 
QDT k is 6.  The regression coefficients a

meQ&

1 to ak may be 
identified by solving the linear regression model (eqn. 4), 
which is given in eqn.(5) as matrix expression. 
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The numbers of the regression coefficients in the model are 
determined by aj. The used regression variables are Xi,j  (see 
also eqn.1 and eqn. 2). We can write this equation also as 
matrix expression (5): 
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4.2 Estimation of the uncertainty of the regression 
coefficients 
 
The ‘residual mean square error’ σ2 (also called MSE) of 
the regression is given by eqn. (6), using normal and the 
reduced matrix/vector expression where σ2 can also be 
called the variance of the error term ∈. 
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The residual degree of freedom is df = n - k. Using the mean 
square error and the data matrix [ X ], according to 
references [12] and [13] the variances of the estimators for 
the coefficients are obtained as diagonal elements of the 
matrix given in eqn.(7). The matrix is formed by the 
regression variables Xij during the whole collector test (see 
eqn. 5). The diagonal elements of the matrix refer to the 
variances var(a1) … var(ak) and the off diagonal elements of 
these matrixes refer to the covariances cov(a1, a2)…. (a1, ak) 
of the estimators. 
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Where j = 1….k is the number of the used model 
components in the multiple linear regression. The standard 

error of the estimated regression coefficients se(aj) we thus 
obtain by the square root (see eqn. 8) of diagonal elements 
of this matrix given in eqn.(7). 
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Given the estimators of the coefficients ja) , a 100(1-α) 
(i.e.95%) confidence interval for the regression coefficients 
aj is determined by eqn.(9). Here tα/2,n-k is the student value 
with the level of significance of α/2 and the degrees of 
freedom n - k (see also reference [12] and [13] ). The true 
value of aj is to find with selected confidence within the 
interval expressed by eqn.(9).  
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Respectively the expanded uncertainty of the regression 
coefficients we obtain by Uc(aj) = ± tα/2,n-k 

x se(aj ). 
 
4.3 Estimation of the uncertainty of the modeled power and 
energy values 
 
The uncertainty U(Qmo) in a 100(1-α) confidence interval 
for the estimated collector energy Qmo during a collector test 
is calculated with (10). 
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Where τm is the time in which the mean values of the 
measurable quantities are taken from the samples of the 
experiment. The uncertainty of the estimated energy U(Qmo) 
is calculated based on the uncertainties of the mean response 
of the estimated collector power which is given by 

, as outlined in reference [13] for linear 
models, where t

)( ,imoQU &

)( ,,2/ imoekn Qst &×± −α

α/2,n-k is again the student-t value. For the 
following calculations we apply an α according to a 
confidence interval of 95% (α=0.05). is the 
standard error of the i-th estimated power value obtained by 
the application of the collector model for a given input 
vector { X

)(s ,e imoQ&

i } that is formed by the variables Xi,1 to Xi,k; which 
was included in to the parameter identification procedure. It 
is calculated by eqn.(11). 
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Where σ2 is the unbiased mean square error of the estimated 
collector power (see also eqn. 3). [ [X]T x [X] ]-1 defines a 
matrix formed by use of all the vectors { Xi } within a 
regression (see also eqn. 7 and eqn. 5). To do a estimation 



about the prediction of the power output for new - i.e. 
unused in the regression - input vectors { X0 } we have to 
substitute the standard error  by the expression 

 given by eqn.(12).  
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We define the prediction interval PIi like [13] outlines as. 

. This prediction interval can 
be used to test the regression model for unknown (or 
unused) inputs. If we apply the prediction interval to the 
data used in the regression, 95% of the estimated collector 
power values  are expected within the interval 
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5.  STATISTICAL ANALYSIS OF THE DATA 
 
5.1 Comparing differences of the SST and QDT parameter 
sets 
 
Comparing the two models underlying the SST and the 
QDT procedures, one can observe that the QDT model (2) is 
a more complete model than the SST model (1): 
 

• The term describing the effective transmission and 
absorption of the solar radiation for the QDT 
model is separated in two parts - one for the diffuse 
radiation and one for the beam radiation, 

• Transmission and absorption of the beam radiation 
are modeled taking into account the relative 
incidence angle θ  between the sun and the 
collector, 

• Non-stationary operation conditions, caused by 
variations of the incoming radiation are accounted 
by a model describing the thermal inertia of the 
collector.  

 
The comparison of the SST model eqn.(1) with the QDT 
model eqn.(2) is possible, as the SST can be considered as a 
reduced and the QDT as a full model. The SST model is 
obtained by setting in the QDT model θ = 0°, Kθd  = 1 and k3 
= 0, i.e. considering that with: 
 

• Kθd = 1, the coefficient that determines the  
transmission and the absorption of the transparent 
cover and the absorber is set identical to the value 
for the beam radiation at perpendicular incidence, 

• θ = 0°, the transmission absorption coefficient is 
not varied with the incidence angle, 

• k3 = 0, we are neglecting the thermal capacity i.e. 
without the thermal inertia of the collector he has 
an instantaneous response to variations of the 
operation conditions. 

 
These settings define the reduced ‘reduced QDT model’ that 
can be directly compared to the SST model (compare 
eqn.(1) and (2)). Clifford and Clogg [14] lines out how to 
determine the statistical significance for the deviations of 
the regression coefficients of a regression analysis applied 
to the same data set when comparing a full model (here the 
QDT) to a reduced model (here the reduced QDT that is 
equal to the SST). If the model components added for QDT 
model are of importance, they will modify in a significant 
manner those coefficients of the QDT model (η0, k1 and k2) 
that are equivalent to the coefficients of the SST model. 
Explicitly that means, if the additional model components of 
the QDT model are not significant, they also will not 
modify in a significant manner the coefficients η0, k1 and k2 
that are obtained from the SST or the reduced QDT model. 
Applying this test for the verification of variation of the 
collector coefficients to a data set selected under SST 
selection and QDT selection criteria’s we obtain the 
information, if the reduced regression model (see the 
standards [1]…[4]) used for the steady-state collector tests 
is sufficient enough to be applied in collector tests. We have 
to proof for this test if the difference dj of the two 
coefficients is significant in relation to the standard error 
se(dj) of that difference (see eqn. 13). The test is done 
comparing the coefficients η0, k1 and k2 of the SST with the 
η0, k1 and k2 coefficients of the QDT. Significant differences 
of these coefficients are proofed with a critical t-value. If the 
difference of the coefficients is too high we can pass the 
critical student t-value determined by eqn. (13) and proof in 
this manner that the coefficients are not equal within this 
comparison. If the t-value of a coefficient of η0, k1 and k2 
passes the critical t-value the coefficients of the QDT model 
are more representative for the energy estimations than the 
coefficients of the SST model. 
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The critical t-value of 2.000 (eqn.13) is obtained from the 
student-t table using df  = n1 + n2 – (k1+ k2)= 146 + 48 -(3 + 
6 ) = 87 degrees of freedom for the significance of 95%. 
Where n is the number of 5 min mean values used, k the 
number of coefficients of the model applied and df are the 
degrees of freedom in the statistical comparison of each 
model.
 
For the comparison of the models, we have used a complete 
data set that was selected under steady-state test conditions 



and extracted the coefficients by multiple linear regression 
as described above. The same we accomplished for the 4 
data sets selected under quasi-dynamic conditions. The 
quasi-dynamic regression coefficients aj,QDT are than 
compared to the SST regression coefficients aj,SST. For the 
better comparison we synchronize both, the QDT and the 
SST data sets in to 5 min mean values that are the input for 
the two different regressions.  
Testing the significance we have to determine, as outlined in 
[14], the difference of the coefficients dj - given by       
d

        
j = aj,QDT- aj,SST and the variances of the differences 

se(dj) given by 
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where se(aj,QDT) and se(a,j,SST) are the standard errors of 
the coefficients aj and σ 2(QDT)/σ 2(SST) is a scale factor 
used for model comparison see paper [14], all obtained by 
the regression using the QDT and the SST models, 
respectively.With this values we can then by equation (13) 
calculate the student-t value to be compared with the critical 
t-value for each regression coefficient. 
 
Observation: If we use the method of Clifford and Clogg 
[14] for the comparison of the QDT and the SST 
regressions, we have to remark, that although the data of the 
SST data set can be a part of the selected QDT data set, it 
never can be the same data set like Clifford and Clogg 
assuming for that comparison. This because of the QDT 
needs more data which are equal to real operation conditions 
(see 6.1 testing conditions). Differences of the coefficients 
η0, k1 and k2 applied to the comparison of the QDT and the 
SST tests may be caused by structural instabilities of the 
QDT. For this, first we have to analyze if the QDT is stable 
by itself. 
 
5.2 Checking the structural stability of the QDT by 
analyzing significance of differences in the coefficients 
gained from the QDT regression applied to collector tests of 
independent data sets  
 
If we like to compare two independent regressions 
accomplished with data set from different time intervals, we 
can use the theorem about inferences concerning two means 
(see references [12] and [13]) for the comparison of the two 
sets of regression coefficients and their standard errors. If 
the number of measured variable sets and thus the number 
of the degrees of freedom is high, we can consider that the 
deviations between the measured and calculated efficiency 
follow a normal distribution. We can take the same 
consideration for the difference between two coefficients 
extracted by two regressions. In large samples, the 
significance of the difference between the coefficients, 

obtained from two data groups A and B can be assessed by 
eqn. (15) as outlined in [14]: 
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Where the standard error of the coefficients of the first data 
group is se(aj,A) and of the second data group is se(aj,B). The 
standard error of the difference between the coefficients is 
se(aj,A,B). The standard error of the difference between the 
coefficients is the square root of the sum of the two 
variances of the coefficients eqn.(15), assuming that we 
have large and independent samples [14]. 
One method to describe the distribution of a random 
variable is using the cumulative probabilities and the 
controlling zj-values are calculated with this method. The 
cumulative standard normal distribution has the mean value 
of ‘0’ and a standard error of ‘1’. If the absolute value of the 
calculated distribution is lower than the value of the 
cumulative standard distribution, the two mean values can 
be considered equal with 95% of confidence (see references 
[12] and [13] ). Testing the equality of two means with the 
different standard errors for their quality within 95% (α=1-
0.95=0.05) of confidence, we have to use the value of α/2 to 
calculate the controlling z-variable or get the value of z 
from the statistic table of the cumulative standard 
distribution for α = 0.025. The regression coefficients from 
two data groups indicate the QDT as a stable test procedure 
if the test variables |zj| fulfilling the condition |zj|< ztable_α/2 = 
1.960 = zcrit .  
 
 
6.  APPLICATION OF THE TEST METHODS 
 
The procedures as described above are now applied to 
various data sets that have been taken over a longer period 
of time, allowing for the selection of data sets that may be 
used as input for the two test procedures. The following 
gives a description of the test conditions and the procedure 
for the selection of the respective data sets. 
 
6.1 Testing Conditions 
 
SST and QDT using different weather conditions for 
calculating by regression the collector coefficients, whereby 
the QDT test conditions are equal to real collector operation 
conditions, i.e. with diffuse fraction Df (QDT) of 0...1 
instead of Df (SST)= 0...0.3, global radiation of G(QDT) of 
300...1100 W/m2 instead G(SST)=800...1100 W/m2, 
incident angle θ (QDT) of 0...60° instead of  θ (SST) 0...30° 
and no limitation of the solar radiation variability in the 
quasi-dynamic-test instead of maximal variation ± 50 W/m2 
during the steady-state test. The collector test occurred over 



the period of approximately 3 months using the same 
collector. During this period data was acquired that serves 
for the evaluation of both, the steady-state and the quasi-
dynamic tests. The collector was first mounted in a collector 
tilt angle β of 45° per the ISO 9806 recommendations. In the 
ISO 9806 the relative angle between the sun and the 
collector θ has to be less than 30°±1°. With β equal to 45° 
and low relative latitudes like in Brazil (Florianópolis is 
27.5°) it is not possible to get data with θ less than 30° 
during the summer time. For this reason we tilted the 
collector to 29° during the summer time. 
For the collector coefficient comparisons that are presented 
in this article we used for the data selection a diffuse 
fraction of Df  = 0...1 (that EN12975 suggests to obtain more 
data by the selection process). We observed that using a 
diffuse fraction of Df = 0...0.5 (that EN12975 determines) 
for the data selection, we get lower stability of the 
coefficients obtained with the regressions. In paper [22] is 
showed that the collector coefficients and the normalized 
efficiency curves of the QDT and the SST collector tests are 
comparable if a diffuse fraction of Df = 0..0.5 is used as data 
selection criteria. 
 
6.2 Uncertainties of the used measurement transducers       
 
We specify and calibrate our measurement system to 
residual measurement uncertainties of ± 0.1 K for the 
temperature measurements, ± 1% for the mass flow 
measurement, ± 0.5 m/s (for covered collectors) for the 
wind speed measurement and  ±  40 W/m2 for the solar 
radiation measurement (using calibrated secondary standard 
pyranometers). The time calibration is made automatically 
by the computer that manages the measurement system 
connecting the computer periodically to a time reference. 
With these uncertainties we are able to fulfill the conditions 
that are imposed by the ISO [2] and Euro [1] standards for 
the collector test.  
 
6.3 Stabilities of the collector inlet fluid temperature and       
flow

 
 

 
ISO 9806 and EN 12975 define that fluid flow at the inlet of 
the collector has to be stable within ± 1%, the fluid inlet 
temperature within ± 0.1 K according to the ISO 9806, or 
within ±1 K according to EN 12975. With the given 
experimental setup, these stability criteria could not be 
reached for the SST but the data sets analyzed obey the 
stability conditions to the mass flow and to the input 
temperature for the QDT. Data of the test were selected 
under the criteria given in standards [1] and [2] for the SST 
and QDT. Only for the SST we had to enlarge the selection 
condition to ± 0.2 K for the fluid temperature. From the time 
period of two month with 29° tilt angle, 4 QDT and one 
SST data sets could be gained by data selection and 
combination. It has to be remarked that the most critical 

weather condition to be obtained in Santa Catarina in the 
southern, subtropical part of Brazil are the clear days, this 
weather condition is necessary to accomplish the complete 
SST and the clear day condition is also necessary during one 
whole day for the accomplishment of a QDT. 
 
6.4 Time intervals used for the identification of periods with 
stable operation conditions 
 
EN 12975 defines that for accepting a measurement interval 
of 15 min all the 30 s mean values within this 15 min have 
to lie inside the limits of the specified ‘stability conditions’ 
(see section 6.3). That formal condition wasn’t possible to 
reach for the fluid flow. For getting more data we enlarged 
the specified 30 s mean values using time intervals for the 
mean value calculation of 3 minutes for the steady-state test 
and adopted 1 minute for the quasi-dynamic test. 
 
6.5 Operation of the tests 
 
We observed that the system can have instability within 
amplitude of approximately ± 5% of the fluid flow with 
frequency of approximately 0.2 Hz. Closing the by pass this 
instability mainly disappears to ± 1%. Probably in a closed 
water circuit the by pass will not generate any influences. 
 
6.6 Normalization of the zero loss efficiency  
 
With equation (16) and (17) we can calculate the normalized 
zero loss efficiency for normalized conditions [1] η0-norm 
based on the QDT set of coefficients with Kθb(θ), b0, Kθd 
obtained from the regression of the QDT. The η0norm-value 
is used to drawing the normalized efficiency curve of a solar 
collector. 
In this way it is possible to compare the normalized 
efficiency curves of the QDT and the SST tests.   
Standard EN 12975 [1] defines the following conditions for 
that normalization:  
 
• Beam radiation: 680 W/m², 

(85% of the global radiation of 800 W/m²) 
• Diffuse radiation: 120 W/m²,  

(15% of the global radiation) 
• Incidence angle: θ = 15°. 
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7.  RESULTS 
 
7.1 Identification of the collector coefficients and their 
uncertainties 
 
For the collector coefficients comparison we used here as 
example the regression results of four data sets according to 
the quasi-dynamic test and one regression results of the 
steady-state test (see Table 1 and 3). The regression 
coefficients aj obtained from the SST and QDT regression, 
the standard errors se(aj) of these coefficients, the collector 
coefficients Cc calculated with the obtained aj and their 
expanded uncertainties Uc are presented in Table 1 and 2. 
The highest uncertainties appears for the coefficients b0 and 
k1 (~20… 30%) of the QDT. Although the standardization 
of the collector test defined by the EN12975 and ISO9806 
has the objective to reduce the uncertainties of the test 
results (that includes the reproducibility) of the collector 
test, both standards don’t give any explicit quantitative 
specifications or limitations for the coefficients or estimated 
energy uncertainties. These uncertainties may be traced 
back to different causes:  
 

a) Uncertainty of the measurement transducers or 
sensors 

b) Problems associated with the stability of the test 
conditions, i.e. the stability of the inlet temperature 
or fluid flow, forcing to increase the tolerance band 
used for data selection, 

c) Failing of weather conditions, which include 
important scales of the variables when applying the 
data combination process, 

d) The model applied is not completely adequate to 
the problem e.g. it is too much reduced to cover all 
effects. 

 
TABLE 1: REGRESSION RESULTS OF THE 
STEADY-STATE COLLECTOR TEST 
 

SST

regression coefficients a j se (a j  ) Uc(a j  ) units

a1 0.632 0.001 0.003 [ - ]

a4 -3.411 0.137 0.276 [ W / m² K ]

a5 -0.071 0.002 0.004 [ W / m² K² ]

SST

collector coefficients Cc U(Cc) units U(Cc) [%]

η0 0.632 0.003 [ - ] 0.47
k1 -3.411 0.276 [ W / m² K ] 8.09
k2 -0.071 0.004 [ W / m² K² ] 5.85

σ2= 16.65 [ W/m² ]²  
 
The absence of the collector coefficients stability and the 
resulting failure of the model stability may also be caused 
by these effects as they may affect each collector test set 

differently. On the other hand the tj-values or zj-values are 
reduced by higher standard errors se(aj,) of the coefficients, 
like you can notice in equation (13) or (15). That means that 
a higher uncertainty in the coefficients leads to more 
stability of the tests. From this we can conclude that for 
testing the stability of a model the uncertainty has to be 
specified. 
 
7.2 Inferences 
 
Table 3 presents the 95% confidence limits for the 
coefficients of all executed tests that are mentioned in this 
article. The mean square error σ2 of each regression that 
gives general information about the quality of the executed 
regression is also presented in this table. From Table 3 and 
Table 5 you can notice that the η0 coefficients are stable for 
all the QDT but the η0 values are different if compared to 
the SST.  
 
 
TABLE 2: REGRESSION RESULTS OF THE QUASI- 
DYNAMIC COLLECTOR TEST No 1 
  

regression coefficients a j se (a j  ) Uc(a k ) units
a1 0.655 0.003 0.006 [ - ]
a2 -0.092 0.012 0.024 [ - ]
a3 0.624 0.004 0.008 [ - ]
a4 -5.236 0.180 0.355 [ W / m² K ]
a5 -0.042 0.003 0.007 [ W / m² K² ]
a6 -12.367 0.496 0.978 [ kJ / m² K ]

collector coefficients Cc U(Cc ) units U(Cc) %

η0_norm 0.647 0.006 [ - ] 0.99

b0 -0.140 0.037 [ - ] -26.55

0.953 0.016 [ - ] 1.66
k1 -5.236 0.355 [ W / m² K ] 6.79

k2 -0.042 0.007 [ W / m² K² ] 16.07
k3 -12.367 0.978 [ kJ / m² K ] 7.91

σ2= 183.9 [ W/m² ]²

QDT N° 1

dKθ

   
 
 
TABLE 3: REGRESSION COEFFICIENTS OF THE 
QDT AND SST COLLECTOR TESTS 

min. max. min. max. min. max. min. max. min. max.
ηo [ - ] 0.63 0.64 0.65 0.66 0.65 0.67 0.65 0.66 0.65 0.67
k1 [ W / m² K ] -3.45 -3.04 -5.59 -4.88 -6.49 -5.53 -6.38 -5.79 -5.90 -5.27
k2 [ W / m² K² ] -0.08 -0.07 -0.05 -0.04 -0.04 -0.02 -0.03 -0.02 -0.04 -0.03

bo [ - ] -0.18 -0.10 -0.16 -0.10 -0.15 -0.11 -0.19 -0.10

[ - ] 0.94 0.97 0.92 0.95 0.93 0.95 0.91 0.95
k3 [ kJ / m² K ] -13.3 -11.4 -14.4 -12.7 -14.1 -12.7 -14.9 -13.4

σ2 [ W/m² ]²

QDT 4 
coefficients

QDT 1 
coefficients

QDT 2 
coefficients

QDT 3 
coefficients

-

-
-

16.65

coefficients and 
unbiased mean 

square error

SST 
coefficients

183.89 132.27 190.46 160.09

dKθ

 



7.3 Comparison of the QDT and SST test results based on 
the significance of the variations of the regression 
coefficients 
 
Comparing the normalized zero loss efficiency η0-norm of the 
4 QDT with the η0 value SST one can observe that the SST 
underestimates the zero loss efficiency by 2.6% (notice also 
in fig.2). In Table 4 we compare the critical student value 
with the student value of each coefficients comparison.  
 
TABLE 4: STATISTIC TEST OF THE EQUALITY OF 
THE NORMALIZED QDT AND THE SST 
COLLECTOR COEFFICIENTS 
 

| tj | test | tj | test | tj | test | tj | test

t(ηo) 0.92 eq. 1.18 eq. 2.17 uneq. 1.05 eq.

 t(k1) 1.72 eq. 2.56 uneq. 4.69 uneq. 1.93 eq.

 t(k2) 1.95 eq. 2.87 uneq. 5.66 uneq. 2.18 uneq.

QDT 2 
compared 
to the SST

QDT 3 
compared 
to the SST

QDT 4 
compared 
to the SST

St
ud
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d 

t-
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es

QDT 1 
compared 
to the SST

 
 
If the student t value of an individual coefficient (taken from 
both, the QDT and the SST tests) is higher than the critical 
student-t value that is 2.000, the coefficients can be 
considered as unequal. If we apply the statistic test for the 
collector coefficient’s comparison for the two different test 
methods (SST and QDT) as described in 5.1 you can notice, 
that the η0norm coefficient is only in 1 of the 4 comparisons 
different to the η0 coefficient of the SST (see table 4). In 
that case the inequality was determined by the low mean 
square error σ2 (notice in Table 3) obtained by the 
regression of the QDT n° 3. The values are compared to the 
critical t-value of tcrit = 2.00. The heat loss coefficient k1 is 
stable in 2 of 4 comparisons and the k2 in only 1 of 4 
comparisons. 
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Fig. 2: Normalized efficiency curve with its uncertainties 
interval (95% of confidence) of the SST and the QDT 
collector tests using the same collector  

Drawing the normalized efficiency curve for both test 
methods with its uncertainties (see figure 2) is another 
method to compare two different test methods. Like you 
can notice in that figure - giving the uncertainty range for 
the normalized efficiency curves of a QDT and the SST 
tests- they do not coincide for the complete range of ∆T/G. 
Here it is to be remarked, that these differences exist, even 
so the normalizations according to EN12975 (see eqn. 16 
and 17) mimics the zero loss coefficient of the STT test. 
 
7.4 Analysis of the structural stability of the quasi-dynamic 
tests by testing the equality of two collector coefficients 
together with the owned standard error or uncertainty  
 
The structural stability of the QDT is checked by applying 
the method described in section 5.2 for the comparison of 
the collector coefficients within the several QDT tests. 
We obtain from the QDT data sets the minimum of n1 + n2 –
(2 x k) = 196 + 146 – 12 = 330 degrees of freedom df, and 
thus consider a normal distribution of the standard errors  
s(aj,A,B). Considering a large and normal distributed 
population, we obtain the tests controlling variable z = 1.96 
from the table of the ‘cumulative standard normal 
distribution’. In Table 5 we can observe the z-variables 
obtained from the inter-comparison of the QDT tests. The 
values are compared to the critical z-value of zcrit = 1.96. By 
combining the coefficients sets of the 4 QDT we get 6 
different combinations of test comparisons. 
 
TABLE 5: STATISTIC TEST OF THE STRUCTURAL 
STABILITY OF THE QDT 
 

| zj | test | zj | test | zj | test | zj | test | zj | test | zj | test

z(a 1) 0.95 eq. 1.09 eq. 0.33 eq. 0.06 eq. 0.47 eq. 0.49 eq.
z(a 2) 0.35 eq. 0.51 eq. 0.03 eq. 0.11 eq. 0.27 eq. 0.38 eq.
z(a 3) 1.43 eq. 1.17 eq. 0.42 eq. 0.55 eq. 0.79 eq. 0.39 eq.
z(a 4) 2.57 uneq. 3.63 uneq. 1.48 eq. 0.26 eq. 0.99 eq. 1.65 eq.
z(a 5) 1.86 eq. 3.28 uneq. 1.25 eq. 0.66 eq. 0.49 eq. 1.51 eq.
z(a 6) 1.84 eq. 1.75 eq. 1.30 eq. 0.26 eq. 0.60 eq. 0.39 eq.

QDT 2 
compared 

to the      
QDT 3

QDT 2 
compared 

to the      
QDT 4

QDT 3 
compared 

to the      
QDT 4

N
or

m
al

 z
 - 

va
lu

es

QDT 1 
compared 

to the      
QDT 2

QDT 1 
compared 

to the      
QDT 3

QDT 1 
compared 

to the      
QDT 4

 
 
As given in Table 5, the coefficients that determine the 
optical model of the collector η0, b0 and Kθd in the table 
represented by the regression coefficients a1, a2 and a3, as 
well as the coefficient that determine the thermal capacity 
k3, here presented as a6 are stable in that 6 combinations of 
the comparison. The quadratic heat loss coefficient, in the 
table presented by the regression coefficient a5 is failing one 
time with the z-value of 3.28, and the linear heat loss 
coefficient here presented by the regression coefficient a4 is 
failing 2 times with the z-values 2.57 and 3.63.  
 



7.5 Uncertainties and mean bias errors for the estimation of 
the produced collector energy and collector power 
 
Applying the equations (10)…(12) for the calculation of the 
uncertainties and the prediction intervals to the whole 
variables ranges of data occurring in collector tests, it can be 
noticed that both the QDT and the SST collector models can 
estimate the produced power with the small uncertainty of 
the mean response of 5 W/m2, on the other hand the 
prediction interval of the SST is lower than in the QDT 
(notice the results presented in figure 3 and figure 4).  
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Fig. 3: Differences between the modeled and the measured 
powers (5 min mean values) per collector area ∈ of the 
QDT Data set n° 4 together with the uncertainty interval and 
the prediction interval using 95% of confidence, both 
calculated for the individual measured points.  
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Fig. 4: Differences between the modeled and the measured 
powers per collector area ∈ of the SST data set (15 min 
mean values) together with the uncertainty interval and the 
prediction interval using 95% of confidence both calculated 
for the individual measured points.  
 
95% of the estimated collector power points  are 
expected within the interval  

where PI
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&
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i is the prediction interval and is the measured 

collector power. By subtraction of  from this inequality 

we obtain the uncertainty limit of the power difference, 
 that is shown in figure 3 and 

figure 4. Analyzing the total energy output of a complete 
QDT test sequence (that presents the typical application 
conditions for the solar collector) an uncertainty (see eqn. 
10) of ± 1.2% can be identified (figure 3). Doing the same 
with the SST (figure 4) we obtain a lower uncertainty for the 
energy estimation of ± 0.9%. It has to be noted that these 
uncertainties are only based on a single test; they don’t give 
any information about the reproducibility of the collector 
test if performing several test. 
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7.6 Test stability and reliability of the models to estimate 
the produced energy 
 
As we dispose of several complete test sequences, we can 
use different model coefficients sets and apply them to the 
data of the different tests (see Table 6). In the rows of this 
table you can notice the differences of the energy obtained 
with the model in relation to the total measured energy in a 
data set of the collector test. 
 
TABLE 6: ENERGY BIASES OR DIFFERENCES OF 
THE MODELED ENERGY ESTIMATIONS TO THE 
MEASURED ENERGY USING DIFFERENT TEST 
RESULTS 
 

QDT1model QDT2model QDT3model QDT4model

QDT1set -0.02 -0.83 -0.16 -0.31
QDT2set 1.06 -0.08 0.66 0.47
QDT3set 0.49 -0.49 -0.02 -0.11
QDT4set 0.81 -0.97 0.07 -0.01

Diffrences to the measured energy [%]

U
se

d 
da

ta
se

t:

 
 
Combining the results of each ‘row’ of Table 6 and applying 
a z-test as described in 5.2 to the energy differences 
obtained by the different combinations of models using the 
same data set, we get 6 combinations of each row, where 
eqn.(15) is substituted by zi = (QA – QB) / se(QA,B). We 
observed that within 24 analyzed combinations only in one 
combination (QDT4set; estimated energy of QDT1model is 
statistically different to the QDT2model with a z-value of 
2.07) the models with different coefficients sets gives 
statistically different energy results. From this test we infer 
that our energy estimation results do not show a high 
sensitivity to significant variations in the model coefficients. 
Only in 1 of 24 combinations the model estimation is 
significantly unequal to the measured energy. Thus, based 
on these combinations, within > 95% of confidence the 
measured energy is estimated by the model. Combining the 
results of each ‘column’ of Table 6 and applying the z-test 
as described in 5.2 to the energy differences obtained by the 
different combinations of data sets using the same model, 



we get 6 combinations of each row. We observed that within 
24 analyzed combinations all the z-values are lower than the 
critical z-values. From this test we infer that our model 
estimations are not subject to significant variations in the 
data sets. That means that when estimating the collector 
energy by one collector model using data sets from different 
collector tests no statistical variations occur. The standard 
errors se(Qmo) of 0.51…0.61% of the total estimated energy 
used for the statistical comparisons above we obtained by 
summing up  the individual standard errors  (see 
also eqn. (10)). 
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7.7 Long term energy estimations  
 
During the whole collector test time of 2 month, 2250 mean 
values (each mean value represents the mean of 5 min data) 
could be selected using the QDT selection criteria. To 
compare the different parameter sets and models we apply 
all parameter sets to estimate the energy gain for the data set 
of the 2250 measured mean values. The measured overall 
energy gain during this time period is 58 kWh. The mean 
biases (given in percent of the overall gain) of the estimated 
energy’s are: 
 

a) 0.5% for the model of QDT1, 
b) -1.64% for the model of QDT2, 
c) -0.5% for the model of QDT3, 
d) -0.5% for the model of QDT4, 
e) -0.08% for a model of QDT derived by applying 

the 2250 mean values the regression, 
f) 6.6% by not taking into account the incident angle 

modifiers and diffuse model component of the 
QDT, (using the ηnorm coefficient) 

g) 6.2% for the model of the SST. 
 
Based on the energy production we see that applying the 
SST test and model as used for the parameter identification 
overestimates the energy by 6.2% as the model does e.g. not 
account for increased reflection losses at high incidence 
angles. If we use the reduced QDT test model (using only 
the coefficients η0, k1 and k2), we get a similar 
overestimation of the energy of 6.6%.         
 
7.8 Long term stability and reliability of the models to 
estimate the produced energy 
 
It is also possible to verify whether the estimated energy 
during this time period is stable or not. For this we compare 
the energy values obtained with the 4 QDT models. 
Applying the data and the respective standard errors of the 
coefficients gained in the 2250 mean value set to eqn. (15), 
we observed that in 5 of the 6 combinations the estimated 
energy’s are statistical equal. Only the estimated energy’s of 

QDT n°1 and n°2 are statistical unequal, compare a) and b) 
in section 7.7. 
 
7.9 Total uncertainties in long term energy estimations 
 
Considering the large data set of 2250 mean values as a 
reference, and applying it as a basis to verify the energy 
estimation for different applied models, we can do the 
following inference: For both, the QDT and the SST models 
we have to add the resulting bias errors to the total 
uncertainties as we do not have any information on the 
stability of these bias errors. In this way we obtain the 
following total uncertainties with our collector: 
In the steady-state test the energy is estimated with a bias 
error of +6.2% (see section 7.7). Adding this bias error to 
the inherent aleatory uncertainty of ± 0.9% we obtain a total 
uncertainty of ± 7.1% for the long term energy estimation.  
In the quasi-dynamic test the energy is estimated with a 
maximal bias error of + 1.64% (see section 7.7). Adding this 
bias error to the inherent aleatory uncertainty of ± 1.3% we 
obtain a total uncertainty of ± 3% for the long term energy 
estimation. 
 
7.10 Confidence limit of the power estimations 
 
The prediction interval for the predicted power of unknown 
inputs is broader than the confidence interval for the power 
modeled for known (used) inputs(see figure 2 and figure 3). 
This is caused by taking into account the inherent variability 
of the system and transducer response for a certain input. 
Using the prediction interval we are able to validate the 
applied model and regression. Within the e.g. QDT test n°4 
we observed that 6.8% of the ∈-values are lower than the 
prediction interval. Expecting the α-value of 5% (by 95% of 
confidence), the model losses only 1.8% of confidence 
(notice also figure 3) within the QDT regression. 
 
8.  CONCLUSIONS 
 
We recommend substituting the SST with QDT for outdoor 
collector tests with fixed mounted collectors for three 
reasons: 
 

• The QDT collector test is more cost effective as it 
can be accomplished in less time, 

• Due to the increased completeness of its underlying 
model, the QDT collector coefficients can estimate 
the energy production of the collector with lower 
uncertainties than the SST estimate based on a 
limited model (see section 7.9). 

• Although we cannot find full model stability of the 
estimated collector coefficients within different 
QDT tests, energy estimations using the different 
test data sets and combing these data sets with 



different QDT coefficients sets have high model 
stability or statistical equality, (i.e. 95%, see 
section 7.6). Instability of the collector coefficients 
not affects the stability for energy estimations, 

• Diffuse fractions of Df = 0…1 (instead of 0…0.5) 
can be used in QDT to get reliable energy 
estimations. 

 
It has to be remarked that our actual system configuration 
not fulfills the complete stability conditions (see 6.3) of the 
test system that are recommended by CEN standard 12975-
2[1] and ISO9806-1[2]. Although the deviations to the 
standard conditions are very small (i.e. 0.2 K instead of     
0.1 K for the inlet temperature of the SST), improved 
stability may be reached by maintain the conditions of the 
fluid flow and the temperature at the collector inlet that are 
recommended by the ISO- and EURO-standards. The test 
rig in which the collector was mounted allows that the back 
and the sides of the collector are exposed to the natural 
variations of the ambient wind. As the used collector 
doesn’t have any isolation at the sides, the model stability 
can be reduced by the variation of wind on this part. This 
influence may be reduced if the collector will be installed to 
a roof during the collector test. With further tests using the 
roof installation and a good isolated collector, it has to be 
confirmed if less wind speed at the back and the sides of the 
collector improve the results of the uncertainty and stability 
of the heat loss coefficients. 
 
9.  OUTLOOK 
 
The collector coefficients can be used to calculate the 
expected yearly energy gain for a given system 
configuration. Weather data for this calculation are used in 
the form of a typical meteorological year TMY [16], [17] 
for the site of interest. Collector test reports are 
accompanied with such calculations using a reference 
system with different collector areas applied to the 
estimated collector model [18]. These calculations are 
accomplished for sites with different climatic conditions. 
The results of performance prediction are important for the 
selection of the most efficient collector for each determined 
solar system. In [5] is outlined that the uncertainty of the 
yearly energy production in a simulation with the 
uncertainties obtained by a QDT for the same collector that 
is used in this article can be ~ 2% by Tm = 40°C and 7% by 
Tm = 60°C. The result has to be checked by quantifying and 
including the reproducibility of the QDT collector test. The 
partial model components that determine the heat losses 
have to be checked accomplishing e.g. the ‘extended 
multiple regression’ as described in reference [21]. 
Although the ‘stability of the collector coefficients’ may be 
important for the collector development and production, as 
well as for the optimization of the collector test procedures 
itself, most important for the application of a solar collector 

is the uncertainty including the reproducibility of the 
estimated energy that the collector will produce in his 
application. To control whether the energy production 
estimated using a specific set of regression coefficients 
obtained with the QDT is representative, a method that that 
gives an empirical error limit of 2% for a data sequence of 
validation is shown in [15]. With these limits it may be 
possible to analyze if a data set of a collector test can be 
accepted or rejected by comparing the measured and 
modeled energy during the test time and a separated 
reference time period. 
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11.  NOMENCLATURE 
 
η0 zero loss efficiency at normal incidence [-] 
η0_norm η0 of the QDT normalized to the SST conditions [-] 
Kθb(θ) incidence angle modifier for direct radiation [-] 
Kθd incidence angle modifier for diffuse radiation [-] 
b0 incident angle modifier coefficient [-] 
k1 heat loss coefficient at (Tm – Ta) = 0 [W/(m2 x K)] 
k2 temperature dependence of k1 [W/(m2 K2)] 
k3 effective thermal collector capacitance [J/(m2 x K )] 
G  global solar irradiance [W/m2] 
Gd  diffuse solar irradiance [W/m2] 
Gb  beam irradiance [W/m2] 
Df diffuse fraction [ - ] 

θ incident angle of the beam irradiance [°] 
Tin inlet fluid temperature [K] 
Tout outlet fluid temperature [K] 
Tm mean collector temperature [K] 
Ta surrounding air temperature [K] 
∆T difference between Ta and Tm [K] 

meQ&  measured power output of the collector [W/m2] 

moQ&  modeled power output of the collector [W/m2] 
∈ measured minus modeled collector power [W/m2] 
m&  mass flow [kg/s] 
dj difference between two coefficients or energy’s 
aj regression coefficients 
Xj,i   regression variable 
se standard error of ‘aj’ or a ‘modeled energy Q’  
U expanded uncertainty of ‘aj’ or a ‘modeled energy’ 
σ2 mean square error [W/m2] 2

j = 1..k number of the used model components 
i = 1..n number of the mean values used for the regression 
df degrees of freedom 
τ time interval for calculating each mean value 
t  student value used for significance test  
z normal distribution value for significance test 
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