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Abstract 

Electric shower heads are widely used in Brazil to provide hot water for domestic use. The 
total power peak demand due to the shower heads in the period of time between 6:00 p.m. to 
8:00 p.m. is around 3.5 GW. The current use of solar domestic hot water systems has proven 
to be not an effective solution to eliminate this peak power. Therefore, a new concept of 
intelligent solar systems, which able to operate integrated to the weather forecast 
information system, should be developed. Storage preheating then could be controlled based 
on solar energy forecast algorithms. Nowadays the Numeric Weather Prediction (NWP) 
models have very low forecast performance for the solar radiation. With the intent to 
increase the performance of these models, its output variables are corrected with Model 
Output Statistic (MOS) techniques. Therefore NWP model residuals, the forecasted weather 
variable subtracted from the measured variable are estimated. Even the corrected solar 
radiation forecasts do presently not have satisfactory forecast performance. In the present 
work a novel high performance MOS technique is presented which is based on the Discrete 
Wavelet Transformation (DWT) and Artificial Neural Networks (ANN). The daily solar 
energy forecast by the presented method reduces the RMSE from 25.5 % to 9.06 % for the 
site Florianopolis, localized in the subtropical south of Brazil. 
Keywords: Numeric Weather Prediction, Model Output Statistic, Discrete Wavelet 
Transform, Compact Solar Domestic Hot Water Systems 

 

1. Introduction 

Electric shower heads are presently installed in 73.1 % of the Brazilian houses. These devices 
accounts for around 60 % of the peak load in between 6:00 p.m. and 8:00 p.m., as is shown by 
reports of the Brazilian electric power system [1]. As demonstrated in a large scale experiment [2], 
Compact Solar Domestic Hot Water Systems (CSDHWS), conjugated to electric shower heads, are 
able to reduce the mentioned peak load due to shower heads by around 60 %. However the peak is 
expected to remain unchanged for those days of low solar radiation incidence. To further increase 
the peak power reduction and its confidence, an intelligent compact solar domestic hot water 
systems is under development and first simulation and optimization were carried out in [3] and [4]. 
According to the proposed system preheating by auxiliary energy should be done in order to 
provide preheated water at 6:00 a.m. and a specified storage water temperature at 6:00 p.m. Thus 
the preheating energy depends on daily available solar energy. Apart from the features solar energy 
use and peak reduction, additional advantage of this system is obtained by heating the water of the 
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storage only at the early hours of the day during which the electric energy has the minimal 
effective cost. Under clear sky conditions a reasonable sized CSDHWS should provide 
satisfactorily the energy that is consumed, and consequently it avoids the demand on electric 
energy for heating [5]. Under weather conditions other then of clear sky, an additional heating of 
the water storage is needed. Therefore, forecasting of the total solar energy incident on the tilted 
collector, EtNWP , as well as the ambient temperature are necessary, in order to identify the gap 
between the expected solar energy gain and the solar energy gain with this system on clear days. 
The conversion of the forecasted horizontal solar radiation in its correlated tilted radiation EtNWP 
can be found in e.g. [6]. The main goal of this paper is to present first numerical results of the 
forecasted daily solar energy obtained by a novel statistic correction of a NWP model based on the 
DWT.  

2. Review to solar radiation forecasting methods 

Three different methods are currently proposed to forecast solar radiation. The first is based on 
time series models, which use a series of the daily average of the measured solar radiation as input 
data. It has been shown in different papers that a RMSE of 5.1 % [7], 8.3 % [8], and 8.4 % [9] can 
be obtained, for local predictions using ANN - wavelet methods. Whereas in [7] and  [8] the 
Continuous Wavelet Transform (CTW) is used, [9] employs the Discrete Wavelet Transform 
(DWT). The author of [8] uses the day number of the year and defuzzficated cloud cover 
information from the weather forecast service, as auxiliary information. These models are 
applicable for sites where the solar radiation was measured during one year [7], two years [8], or 
longer time intervals [7], [9]. The second method is able to forecast the motion of clouds using 
satellite imaging over the earth surface. It can forecast the solar radiation for any site or area, but 
the uncertainty related to the utilized models increases substantially over 22% to 30%, for forecast 
horizons larger than six hours, as reported by Lorenz [10]. The author obtained the former value 
for low and the latter for high cloud variability. The third method, used in the present article, is 
based on the NWP with its statistical correction MOS. 

2.1. Numerical weather prediction models  
The NWP models are able to provide the solution for seven atmospheric parameters, by solving the 
momentum, mass and energy conservation equations related to the motion of air and water vapor in 
the atmosphere. These models are also able to estimate the cloud cover, and incoming solar 
radiation [11]. By the model GFS (Global Forecasting System) [12], numerical modeling are 
performed in a (0.5 x 0.5)° earth surface grid with sampling interval of 3h. In order to improve the 
performance of local forecasts, the data of the global model are assimilated by regional NWP 
models. By using the hydrostatic model ETA with grid resolution of (0.4 x 0.4)°, Guarnieri [13] 
obtained a RMSE of 43.9 % and 43.6 % for the daily total of incoming solar radiation, for two 
different sites in Brazil.  

2.2. Statistical methods for correcting forecast of NWP models 
Due to its high uncertainties, the performances of the NWP models have to be improved. As stated 
by Wilks [14], the predictors are the input variables of a statistic black box model, which has the 
function to predict an output variable, named as predictand that is used for correction. The MOS 
can be categorized in two distinct methods that differ in its predictors. While the first method, 
which is applied in [11] and [13], utilizes as predictors the simulated weather variables of the NWP 
model, except the solar radiation, the second method utilizes as predictors a time series of the 
measured minus the forecasted variable as presented by Libonati [15]. The second method is thus 
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enabled for phase and amplitude corrections of a local weather forecast. The Multiple Linear 
Regression (MLR) as shown in [11] and [13] or an ANN [13] is used as statistic model for the first 
method and a Kalman Filter for the second method [12]. Correcting the non-hydrostatic model 
MM5, which has a resolution of           (3 x 3) km, the author of  [11] obtained for two different 
years an RMSE of 28 % and 30 % for the prediction of the total daily horizontal solar energy on a 
site in Germany. Correcting the hydrostatic model ETA, the author of [13] obtained an RMSE of  
25.5 % and 25.6 % for the forecast of the same variable for two different sites in Brazil. At a 
particular day the radiation was predicted with 17 MJ/m2 (107% of the mean value), whereas the 
measured energy was only 2 MJ/m2. The author selected the used output variables of the ETA 
model by the application of a significance test based on the MLR. Substituting the MLR with an 
ANN model the author didn’t observe considerable improvements of the MOS using the selected 
variables as predictors. The author applied the obtained model to other sites to test the generality of 
model performance. For two different cases, he obtained 35.6% and 38.9%. The second MOS 
method, which utilizes the Kalman Filter model [15], wasn’t already applied for the forecast 
correction of the solar radiation. The Kalman Filter has the disadvantage that it cannot, in its 
standard version, handle nonlinear problems [16]. Even applied to strictly linear systems, this 
model has higher uncertainties compared to an ANN, as shown in [17].  

3. Materials, methods and models 

In the present work the solar radiation is forecasted with the non-hydrostatic model Advanced 
Regional Prediction System (ARPS). This model is providing its forecast weather variables for a 
horizontal grid of (0.12 x 0.12)° resolution with a sampling interval of 10 min. The model is 
simulated at the LEPTEN laboratory (Laboratory of Energy Conversion Process Engineering and 
Energy Technology), former LABSOLAR, at the Federal University of Santa Catarina. The 
simulation assimilates the data of the global reanalysis delivered by the National Center for 
Environmental Prediction (NCEP) [12]. The analysis data characterize the initial condition at every 
6 h, necessary to operate ARPS in actual time. The reanalysis data represent improved analysis 
data of the atmosphere.  Both the analysis and reanalysis data are based on atmospheric 
measurements and their interpolations, as well as on the last forecasts of the GFS, which can 
accomplish forecasts until a ten days horizon. The operational forecast uncertainty includes both 
the analysis and the forecast uncertainty. In the present article only the uncertainty based on the 
reanalysis are verified. Therefore the reanalysis data, based on the GFS model, is assimilated with 
the regional ARPS model in a 6 h interval. For the uncertainty verification the 24 h mean value of 
the downward short wave radiation of the ARPS output is compared to the measured mean value of 
the global radiation. In a second step a statistical correction for the reanalysis uncertainty is 
accomplished. In the text that follows the daily energy E [Wh/m²] is equal to the daily mean 
radiation H [W/m²] multiplied by 24 hours.  

3.1 Wavelet implementation of the MOS 

The NWP uncertainties of the rainfall forecast is based on non-stationary, nonlinear and dynamic 
effects as stated by Todini [18]. As the solar radiation forecast is also a function of the cloud cover, 
it is probably subjected to the same underlying effects. For non-stationary signals the short-time 
Fourier transform, also named as Fast Fourier Transform (FFT) has the disadvantage that the 
information concerning the frequency content at a specific time interval can only be obtained with 
limited uncertainty. By the Heisenberg uncertainty theorem the method increases its uncertainty for 
the frequency, if the width of analyzing time window is small, and in the time location of a 
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particular shape if the windows width is large [19]. A high resolution in time and frequency is 
obtained by the wavelet convolution, also referred as mathematical microscope [20], where the 
analyzing time window with is variable in a single transformation. With digital computers the 
Discrete Wavelet Transform (DWT), has the advantage to reconstruct the decomposed signal with 
lower uncertainties than the Continuous Wavelet Transformation (CWT) [19]. Also the amount of 
convolutions is reduced with the DWT which increase the transform speed. This transform is based 
on the members of a family of functions [20]. One has to begin with the selection of the family of 
wavelets, e. g. the bi-orthogonal wavelet family, and one of the mother wavelets within the selected 
family. While the orthogonal DWT uses the inverse filters for the reconstruction of the signal, the 
bi-orthogonal transform introduced by Cohen [21] permits the utilization of distinct filters for the 
decomposition of the signal and its reconstruction (Souza [22] citing [21]) in order to obtain 
symmetric wavelet functions. The mother wavelet function determines the order and specifies the 
time window or support length of the convolution at the first time scale (m = 1). Also each mother 
wavelet has its own function shape and degrees of freedom [19]. A TDW transform is 
accomplished at different time scales (m = 1 ... mx), using different functions, named by the 
members of a family, which are all specifically related to the mother wavelet function. If at a 
specific time location the signal shape is similar to the wavelet shape, one obtains high wavelet 
convolution coefficients. At each of the m time scales the signal is convoluted by the DWT with 
distinct wavelet functions. The daughter wavelet functions ψm,n(t) (eqn.1) are equal to the expanded 
and translated mother wavelet functions ψ [19].  

ψm,n(t) = 2-m/2 ψ( 2-m t - n)      ; m, n ∈ Z; t ∈ ℜ   (1)

Where m defines the scaling or expansion of the mother wavelet and n defines the translation of ψ, 
relatively to the time t of the time series values from the signal to be analyzed. Due to the 
expansion, the convolution support lengths are increased by the factor two from scale m to m+1. 
For the DWT, the wavelet convolutions are obtained by a filter bank of Finite Impulse Response 
(FIR) digital filters [19] (Figure 1a). The filter bank separate by low and high pass filters the signal 
to be analyzed in signals with distinct frequency bands. The mother wavelet (Figure 1a – first bk 
filter) represents the FIR high pass which separates the highest frequencies appearing within the 
bandwidth of (SL-1 ... ∞). SL is the support length of the mother wavelet. The low pass filters ck, 
also named as scaling function, represent on its output the signal with the complementary low 
frequency band until to zero frequency. At m = 1, e.g. the complementary frequency bandwidth is 
(0 ... SL-1) and for m = 2 its frequency content decrease to (0 …(2SL)-1). The frequency band of the 
high pass filter at this scale is ((2 SL)-1... SL-1) and from scale m to (m+1) its band width is reduced 
by the factor two. Where in the Fourier transform the frequency bins are hold constant, in DWT the 
energy is hold constant to obtain nearly complete reconstruction of the original time series signal. 
The signal details and approximations at distinct time scales or filter bands are obtained by the bk 
and ck filters (Figure 1a). The last scaling function is also known as father scaling function [20]. 
The downsampling function (2↓) after each filter reduces the vector length by two, avoiding a 
redundant representation of the decomposed signal and due to the upsampling (2↑) the signal is 
reconstructed to its original vector length. The decomposed signal can be represented by the 
wavelet and scaling coefficient vectors T(m,n) and S(m,n) (Figure 1), or by equal length partially 
reconstructed sub-signals. If during the reconstruction of the original signal, utilizing the inverse 
filter bank (Figure 1 b), only one of these vectors is supplied to its input, the signal which 
corresponds to the supplied vector, is reconstructed to the length of the original time series. This 
wavelet transform is also referred as Non Decimated Wavelet Transform (NDWT), or à trous WT 
and its partially reconstructed signal vectors are here named as sub-signals. Beside the 
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reconstruction based on the wavelet and scaling coefficients (Figure 1 b), with the NDWT one can 
reconstruct the original signal by the sum of the complete sub-signal set.  

bk

bk

S(3,n)

2
x(n) = S(0,n)

bk ~

Cf(1,k)

2

(b)

~

bk

~

T(1,n)

2

2

T(3,n)

x(n) = S(0,n)

bk

2

~

~ck

2

ck

ck

S(1,n)

T(1,n)

2

ck

2

ck

S(3,n)

T1(2,n)

2

2

T(3,n)

bk

ck

~

2

S(2,n)

T1(2,n)

2

(a)

Cf(2,k)  
Figure 1  – Wavelet digital filter bank for the decomposition of a signal (a) and its reconstruction (b), where   
( 2↓ ) stands for the downsampling process and ( 2↑ ) stands for the upsampling process 

 

3.2 Avoiding boundary uncertainties under prediction 

By convolution, the length of the scaled and translated wavelet functions in the DWT is distinct 
from the signal length, which can lead to additional convolution uncertainties on the boundaries of 
the signal as stated in [19]. The authors of paper [9], as well as a large number of references which 
using the orthogonal DWT as auxiliary tool to obtain performance improvement of Time Series 
Prediction (TSP) models, do not consider that its obtained performance may not hold for the 
operation of the prediction model. The documented uncertainty may increase during the application 
of the model to predict unknown future values in real or actual time. The authors applying the TSP 
models to the vector of the training and the validation set in which the increased boundary 
uncertainty do only appear on the correction of the last predicted value of these vectors. Some 
authors applying padding techniques to the orthogonal DWT, which reduce the uncertainties of the 
reconstructed signal at the signal boundaries. These techniques distort the typical characteristics of 
the wavelet coefficients and the behavior of the sub-signals at the boundaries to lower the 
reconstruction uncertainty at the boundary. As the wavelet sub-signals (see section 3.1) are used 
for the time series prediction models, the local distortion can decrease its performances 
considerably. Therefore, also the performances of the reconstructed predictions decrease. 
Furthermore, most of the authors do not consider that if the trained and validated TSP model is 
applied for the prediction, it is continuously exposed to boundary conditions. At each new 
prediction, the model input variables or predictors are separated from the estimated output variable, 
by the right hand side boundary of the sub-signals as also discussed in Renaud [23]. The boundary 
appears new, because the signal has to be decomposed before each new prediction. By the 
utilization of wavelet networks as presented in [7] and  [8] the boundary uncertainty in time series 
predictions may not appear due to its adaptive learning feature which can be applied to real time 
predictions as worked out in [24]. Wavelet networks substitute the sigmoidal activation function by 
a wavelet function. However, this method presents too many permutations for its optimization due 
to the selection of the network architecture, the number of neurons in the network layer, the 
wavelets functions and its scaling and translating counterpart, thus its optimization is a time 
consuming computational task. The anti-symmetric Haar was used in [23] for time series 
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predictions. Beside the Haar wavelet the DWT provides also the biorthogonal wavelet functions for 
the symmetric wavelet transform. The statistical correction in the present article is based on a 
biorthogonal wavelet function. Due to its symmetry and linear phase characteristic undesirable 
phase distortions of the sub-signals are avoided [25] and boundary treatment can be simplified 
[19]. By symmetric padding at the boundaries the bi-orthogonal wavelet transform, is converted in 
a DWT on a bounded interval as exposed in [26].  

3.3 Dynamic, non stationary and non linear behaviour 

The NWP uncertainties of the rainfall forecast is based on non-stationary, nonlinear and dynamic 
effects as stated by Todini [18]. The solar radiation forecast, also a function of the cloud cover, is 
expected to be subjected to the same underlying effects. Time series models which using the DWT 
are capable to interpret non stationary effects as stated in [27] and time series models using the 
auto-regression (AR) models are capable to interpret dynamic effects [28]. Applying the AR model 
to the Haar and the bi-orthogonal DWT family, shows that the highest order bi-orthogonal wavelet 
transform of the MatlabTM tool set (bior6.8) I, has the best performance for the DWT-AR MOS of 
the solar radiation correction as shown in [29]. Thus, it can be considered, that the DWT, which 
uses the highest order bi-orthogonal wavelet corrects best the dynamic and non stationary 
characteristics of statistic MOS model. Improving the correction of the non linear effects, the AR 
model is substituted by an ANN in the present article.  

3.4 Statistical correction of the NWP model output 

The idea of the proposed statistical correction method is based on the time series correction MOS 
as presented in [15] for local correction. The Kalman Filter is substituted by the ANN-DWT 
(section 3.5). This method is utilized to estimate the correction of the solar radiation for the 
forecasted day, based on the recognized pattern of the NWP residual obtained from twelve 
previous days. The residual {εA} between the measured {H} and the forecasted daily mean solar 
radiation {HA} is estimated to correct the NWP output with this estimations { Aε̂ }. The forecasted 
{HA} and the measured {H} solar radiation time series are in a first step both decomposed in its 
sub-series {HAs} and {Hs} by the DWT. For mx time scales one obtains s = 1 ... (mx + 1) sub-
signals of residuals {εAs} of the ARPS forecasts by the equation (2). For s = 1 ... mx , the vectors 
{εAs} are the sub-signals which represent the details and for  s = (mx + 1), the {εAs} is the sub-
signal which represents the approximation of the ARPS residuals.  

{εAs} =  {HAs} - {Hs}   (2) 

The independent {εAS} sub-signal vectors can also be obtained by the direct decomposition of the 
residual vector {εA}. Each of these time series is utilized for the training of its corresponding ANN, 
minimizing the squared error (eqn. 3) in a supervised learning process [30] to estimate the 
predictand iAs ,ε̂ for the day i, based on the characteristic pattern of the predictors, the εAS - values of 

(i-1) to (i-k) previous days. The symbol E stands for the energy of the error [30]. 

E   =  2-1/2∑=

n

i 1
(ε) As,i (εAs, (i-1) ... εAs, (i-k)) - εAs, i)²  →  min   (3) 

                                            
I This function has a support length of thirteen sampled discrete values. 
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The forecast output of the NWP model is corrected with the sum of the (mx+1) estimated residual 
values ε) As,i.  

3.5 Artificial neural network implementation  

For each of the four {εs} time series a specific ANN is trained with an improved Back Propagation 
(BP) algorithm [9]. In the present work an ANN with a simple optional feedback connection was 
used (Figure 2, left line).The feedback line transforms the used Feed Forward (FF) ANN in a 
Recurrent Neural Network (RNN). The blank rectangles in figure 2 symbolize the activation 
functions, those one with z-1 a one day delay, and those one with the unity represent the unity 
inputs for the bias weight connections. Each layer of the ANN includes dendrite connections with 
its weights, designed by sloped lines. The dendrite summation point of the neurons is designed by 
circles and the output activation functions by blank rectangles. A bipolar sigmoidal activation 
function for the neurons in the hidden layers and a bipolar linear activation function for the output 
neuron were applied. The input and output signal were normalized to appear in the range (-1...1) 
utilizing the normalization equations in [9]. By a conventional BP algorithms, the weights [wu] at 
iteration step u are updated as a function of the matrix [η {δu} {yuT } ] of eqn. (4). Whereby {δu} 
is the propagated error at the output of an arbitrary layer of the ANN, η is the pre-adjustable 
learning rate and {yu} is the output of the previous layer. 

[ w u+1 ] = [ wu ] +  ηx  [ {δu} {yu
T } ]  + α [ w   u – w   u-1 ]   (4) 

As the present ANN has only one neuron in the output layer, {δu} is a variable (δu) and the weights 
matrixes in eqn. 4 are all vectors. In order to improve the convergence speed online training, rather 
than batch training is used, where the ANN weights are updated for each daily mean [30]. 
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Figure 2 – Circuit of the utilized ANN during its training phase utilizing BP with fully dendrite connections 
in between the layers (Observation: In present article an additional hidden layers of neurons is used, but for 
the simplification of the scheme, the ANN is designed with only one hidden layer) 

By the BP the error energy E (eqn. 3) is propagated back due to partial differentiations, hence           
εAs,i = εAs,u  = δu is obtained at the ANN output layer [30] (Figure 2). If during the training δu = f(u) 
a local minimum of δu is separated from the general minimum by high walls, with high Δδu = f 
(Δu) gradients, the algorithm may need too many steps to climb the walls moving out of the local 
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minimum and it runs the risk of being trapped [30]. Therefore were used as learning rates ηx , two 
distinct pre-adjustable values, one  η(-Δδu) = 0.008 for decreasing δu residuals and another η(Δδu) 
= 0.013 for increasing δu . The former is used to minimize the uncertainties by learning and the 
latter enables the algorithm to climb the walls more quickly by increasing residuals in order to 
search the global minimum. An adjustable momentum factor α = 0.8, increases additionally the 
weight actualization (eqn. 4) and thus the learning speed, at locations where the learning process 
occurs with more success. These locations are identified by the weight modification gradient, of 
the last two learning steps [w t – w t-1]. For higher gradients the matrix α [w   t – w   t-1] accomplish 
higher weight modifications and vice versa. The decrease of the weight actualization avoids that 
the algorithm jumps over a narrow global minimum and therefore increases the stability of the 
learning process [30]. 

4. Data basis and verification 

The performance of the NWP model ARPS and the proposed MOS procedure is verified for the 
site Florianópolis, localized in the south of Brazil with 48° 31’15’’W longitude and 27° 36’ 76’’S 
latitude. The measured global horizontal radiation within the period from January 2000 to June 
2006 was used to calculate the daily mean values. For daily mean values, the utilized pyranometer 
CM11 has a measurement uncertainty of 1 % for 95 % confidence as stated in [31]. For the quality 
control [32], [33] the measured radiation vales have to appear in the measurement range of            
(0 to 1367) W/m2. If this criterion was not fulfilled for a time interval larger than 10 min, the daily 
mean value was rejected as recommended in [33]. From the training-validation of 6.5 years, 119 
days were excluded by the quality criterion, leading to the remaining data, which appears in 53 
consistent time series. To facilitate the implementation, the data blocks of the training data set were 
chained, rather than is accomplished a specific DWT of each block, obtaining three equal length 
vectors with synchronized day numbers. The vector of residuals {εA} is obtained by subtraction of 
the measured {H} from the forecasted daily solar radiation means {HA}. The obtained predictors 
εAs,i-1  to  εAs,i-k and predictands εAs,i (eqn. 3), selected from the partially reconstructed sub-signals 
(eqn. 2, {εAs}), have to consider the limitations of each of the data blocks to avoid uncharacteristic 
modification of the ANN input pattern. As to see in eqn. 3, the data of the first k days of each block 
are used exclusively as predictors, thus a time series with the length nj provide (n-k) training 
samples for the ANN. Each sample has an input vector with the pattern length k, the predictors, 
and one output variable, the observed predictand, of the forecast at the considered time scale. The 
total number of training-validation samples ntv is obtained with expression (5). 

ntv  = ∑ =

nb

j 1
(nj - k )   (5) 

Where j = 1...nb defines the number of data blocks obtained by the data qualification, with block 
individual number of training samples nj . The resulting data set is subdivided in two subsets, the 
training and the validation set. As recommended in Kaastra [34], the validation set, which is 
independent from the training set has to represent (10 ... 30) % of the data. This set may be selected 
randomly from the data or it follows immediately the training set [34]. From the data the last year, 
representing a validation set of 18 % was separated. Due to hardware improvements of the 
measurement system [35], the validation set was not exposed to system outages, which leads to its 
consistence.  
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5. Results 

The average of the selected daily mean values of the measured solar radiation is 182.36 W/m². For 
ARPS model simulations, based on the reanalysis dada, was obtained a RMSE of 70 W/m² that 
corresponds to 38.4% of the measured average value. The maximal error of the daily mean solar 
radiation simulation is with 264.3 W/m² higher than the measured average value (compare figure 3 
– third chart and figure 4). If the correction is build up with data of twelve subsequent previous 
days (k = 12), a set of 1356 predictor vectors (εAs, (i-1) ... εAs, (i-k) ) were selected. With the 
proposed MOS method the RMSE of the ARPS model reduces to 18.92 W/m² for the training data 
set, which corresponds to 10.37 % of the measured average value of 182.36 W/m². For the 
independent validation data set was obtained 9.06 % (see figure 3, fourth chart and figure 5). Worst 
performances were observed for the sub-signal d1 which contains the details of the higher 
frequency band (RMSE = 9.08 W/m²) and for the approximation sub-signal a1 (RMSE = 6.82 
W/m²). The generalization performance of the ANN was verified with the validation data set. By 
arbitrary configured number of neurons in each layer with (k = 12), the best performance of the d1 
sub-signal correction was observed, for 22 neurons at the first, and 12 neurons at the second hidden 
layer. This configuration of the neurons was used also for the other three ANN, whereby the one 
used for the approximation signal was configured as RNN, due to slight improvement in its 
performance. To access the probably higher boundary uncertainties under operation of the 
prediction model, it is necessary to accomplish ntv times (equation 5) the DWT for the data set 
having ntv predictor/predictand samples (see discussion in section 3.2). Avoiding numerical effort, 
the present article release only the results based on a single DWT of the data set as accomplished in 
[9]. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 – Daily mean values of the solar radiation - charts from the top to the bottom: (1) measured solar 
radiation H; (2) forecasted solar radiation with the ARPS model HA; (3) (H - HA); (4) (H - HA,corr), where 
HA,corr is the corrected ARPS forecast. The validation set appears from 2000 to 2500 days.  
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Figure 4  – Daily mean values of the forecasted versus 
the ground measured global solar radiation on horizontal 
surface utilizing the ARPS model  
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Figure 5  – Daily mean values of the forecasted versus 
the ground measured global solar radiation on horizontal 
surface utilizing the corrected ARPS model  

6. Discussion of the results, conclusions and future activities 

As shown in figures 3 to 5 the presented MOS model improves considerably the output of the 
ARPS model simulation. Small amount of performance improvement may be obtained by the 
single convolution of each data block, instead of chaining, to avoid the boundary uncertainties at 
the borders of each of the data block on the training set (se section 4). However, to evaluate the 
operation of the statistical correction, the uncertainties under continuous boundary conditions have 
to be evaluated (see sections 3.2 and 5).  

Furthermore, as the presented results are only based on simulated reanalysis data, they have to be 
still compared with the statistical corrections of ARPS simulations based on data of analysis, and 
forecast global simulations. The former is important to verify the performance loss for the analysis 
data. The latter is important to verify the statistical correction of both the analysis and the forecast 
uncertainties, since they appear in a combined form within the forecast results. Furthermore, 
actualizations of the NWP model may lead to additional uncertainties in the analysis and forecast 
corrections. With a forecast based on the reanalysis data, also named reforecast, these 
actualizations are avoided [12]. Additional performance improvement may be obtained by the 
inclusion of time series of other variables forecasted by the NWP [36]. Comparable to the MOS in 
[12], the presented MOS method DWT-ANN is only able to improve the forecasts at sites where 
measurements of the simulated variable are available. A solution for this problem is proposed in 
[36] with a site unspecific time series MOS, based on a wavelet model. This model may be applied 
with low uncertainties for the NWP output corrections of a limited region, as e. g. a city, where 
CSDHWS installations can be find in different locations.  
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