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Abstract

Because of the intermittent nature of the solar radiation resource, photovoltaic (PV) solar energy generation is considered a non-dis-
patchable power source. However, under some conditions, in sunny urban areas with electricity load curves dominated by air condition-
ing loads, there is a high correlation between PV generation and utility feeder loads. In these situations, a considerable fraction of a given
PV generator can be considered dispatchable power. In this work, we assess the potential of grid connected, building integrated photo-
voltaic (BIPV) generation in the state capital, Florianópolis, in south Brazil (27 �S, 48 �W), which is supplied by the local utility company
through 56 feeders. Our interest was to identify which feeder could obtain more benefits with implementation of a PV plant with a spe-
cific nominal power. Two factors are important in this analysis: the peak demand reduction value, and the LOLP (loss of load proba-
bility, in failures per year), or LOLE (loss of load expectation, in hours per year). We analyzed the hourly demand curves of the 56
feeders and compared them with the PV power generation values obtained from a 2 kWp BIPV installation that has been operating con-
tinuously for nearly 10 years connected to one of these feeders. For our calculations, we defined a PV installation of 1000 kWpAC, which
corresponds to penetration level values between 10% and 20%, depending on the specific feeder considered. Our results demonstrate that
the use of PV power plants can reduce significantly the summer demand peaks in regions where the load reflects commercial customers
demand for midday air conditioning.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Grid connected photovoltaics (PV) is presently the fast-
est growing energy technology in the world, which grew in
existing capacity by 55% per year from 2000 to 2005 [1].
Second is wind power, which grew by 28% per year [2].
On the other hand, despite constant production cost reduc-
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tions following a learning curve with a learning rate1 of 0.2
[3–8], PV conversion of solar energy to electricity is still one
of the most costly energy generation alternatives commer-
cially available. For this reason, maximizing the benefits
of this decentralized, modular, silent and clean renewable
energy technology is of fundamental importance to
improve its economic value when compared with more tra-
ditional energy technologies. While the off-grid market has
been the steady commercial base to support the gradual
1 The learning rate (LR) is the relative cost reduction for every doubling
of cumulative production due to ‘‘learning’’. A LR = 0.2 results in a 20%
production cost reduction for every doubling of cumulative production.
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2 The PV penetration level is defined as the percentage of the historic
peak (AC kW) of a given feeder that is supplied with PV power (DC kW),
and in this work, we assumed an 80% performance ratio (i.e. ratio of
actual AC power and rated DC power of the PV generator), based on the 9
years of monitoring of a BIPV installation operating at LABSOLAR/
UFSC [14,23–25].
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expansion of the PV industry, grid connected applications
have grown to 82% of the terrestrial PV market volume
in 2005, with a compound annual growth rate of 55% in
the 2000–2005 and 32% in the 1980–2005 periods [1]. This
application also uses much larger volumes per individual
installation than most of the other PV applications and is
forecasted to continue to expand as more countries adopt
incentive programs. While, at present, most of this applica-
tion development is taking place in the developed world, it
is expected that, with declining costs, the benefits of the dis-
tributed nature of grid connected PV will extend to a more
widespread adoption of this application worldwide, with
multi-megawatt production plants scattered in many conti-
nents [9,10]. Brazil is particularly well suited for the appli-
cation of grid connected PV due to both a considerable
solar resource availability, which results in high energy
yields for BIPV installations [11], and to the high value that
can be attributed to PV in commercial areas of urban cen-
ters [12–14].

PV can contribute to a utility’s capacity if the demand
peak occurs in the daytime period. Commercial regions
with high midday air conditioning loads normally have a
demand curve in good synchronism with solar irradiance
profiles [15–19]. Another important factor in this analysis
is the comparison between peak load values in summer
and winter. The greater the demand in the summertime is
in comparison with the demand in wintertime, the more
closely is the load likely to match the local solar availability
profile. This is the typical picture of most capital cities in
Brazil. Utility feeders in urban areas all over the country
show distinct regions where commercial and office build-
ings dominate and which present daytime peak demand
curves, whereas residential regions have their demand
peaks in the evening. To add value to the distributed nature
of solar generated electricity, it is important to know the
PV capacity of the different regions of a city when installing
a PV power plant in order to select the feeder with the
greatest capacity credit. In this context, the concept of
the effective load carrying capacity (ELCC) of a PV plant
was defined to quantify the capacity credit of a strategically
sited PV installation [15–20].

Florianópolis is a capital city located in south Brazil,
and it presents one of the lowest solar irradiation levels
of all its vast and sunny territory (some 4.5 kWh/m2/day,
with the maximum value being around 6.5 kWh/m2/day
in the northeast region [21]). In a country where cooling
requirements are considerable and heating requirements
are very low, this results in the summer electrical consump-
tion being more than twice the winter consumption. In this
context, the central commercial region of the city presents a
high midday air conditioning demand, which is expected to
result in the load being well matched to the PV’s power
output. Meyer and Luther [22] have previously studied
the correlation between electricity spot market prices and
PV generation, which they found to give a good indication
of the additional value of PV electricity. In this work, we
make the following assumptions: if a PV power plant with
a specific power capacity is to be installed in the urban
environment, the city of Florianópolis in our case study,
which of the utility feeders will benefit most from the peak
shaving capability of PV. Two parameters are important in
this choice: the demand peak reduction capacity of PV and
the number of failures, or demand events not completely
supplied by PV generation.

2. Methodology

The methodology described below can be applied to any
urban center for which at least hourly electricity demand
and solar radiation data are available. For the 56 feeders
that supply the city, we identify two parameters: historic
demand peak value without PV and historic demand peak
value with PV (demand minus PV generation) for a period
of 2.5 years using hourly values and calculate the following
factor:

POPR ¼ ððhistoric demand peak without PV-historic

demand peak with PVÞ=PV powerÞ � 100%

where POPR is the percent of peak reduction relative to the
nominal PV power. Based on the historic demand peak val-
ues, for each feeder, we selected a nominal PV power of
1000 kWAC that represents a PV penetration level2 varying
from 10% to 20% depending on the feeder. For a well de-
signed and installed grid connected PV system in Brazil,
this corresponds to a nominal PV power of 1250–
1300 kWCC [14,23–25].

In a second step, we plotted a graph for each feeder with
the following information:

– All demand values greater than the historic peak
demand value minus 1000 kW (corresponding to the
nominal PV power for a maximum irradiance of
1000 W/m2).

– All the corresponding demand minus PV generation
values.

These values were organized in descending order of the
demand minus PV generation values and are shown in the
next section for two selected feeders. Two horizontal lines,
representing the historic demand peak value and the his-
toric demand peak value minus PV power (1000 kW) are
also plotted. If we assume that the PV plant should be con-
sidered a dispatchable power source of 1000 kW, the
demand with PV values should never exceed the historic
demand peak value minus the PV power value (limit value).
If this value is exceeded, we can see how much the demand
with PV exceeds this value and how often it occurred. An
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important parameter is the quantity of hours per year that
the demand with PV exceeds the ‘‘limit value’’. We named
this parameter PV-LOLE (PV loss of load expectation).
The PV-LOLE differs from the conventional definition of
LOLE in the fact that the conventional LOLE considers a
total loss of load in hours per year and the PV-LOLE is a
partial loss of load of the PV generation, which not neces-
sarily means that the feeder failed in supplying the demand.

We have also calculated the PV-LOLP (PV loss of load
probability) values for all the feeders with daytime demand
peak. Comparing the PV-LOLE and PV-LOLP values, we
obtain the mean time, in hours, of failures. For example, a
PV-LOLE = 8 h per year and a PV-LOLP = 4 failures per
year mean that, on average, a failure in the PV supply had
a duration of 2 h.

3. Correlation between PV output and feeder demand

Fig. 1 shows, for one of the typical daytime peaking util-
ity feeders studied (feeder ID # TDE_07), the peak shaving
effect of adding a small amount of PV to assist in reducing
the load requirements of the feeder. Feeder load profile
data were supplied by the local utility CELESC (Centrais
Elétricas de Santa Catarina www.celesc.com.br), and the
solar radiation, as well as the PV generation data, were
obtained from the fully monitored 2 kWp BIPV installa-
tion operating at LABSOLAR/UFSC’s building since
1997 [23–25].

The plots demonstrate the high correlation between
power demand and solar availability for three consecutive
days with different cloud cover profiles. Monday, 03/04/
02; Tuesday, 03/05/02 and Wednesday, 03/06/02. The
lower straight line, labeled ‘‘Demand limit with PV’’, repre-
sents the demand value that should be guaranteed not to be
exceeded due to the contribution of PV. On Monday morn-
ing, with an overcast sky, the demand was relatively low. In
the afternoon, with higher values of solar irradiation,
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Fig. 1. Demand behavior of feeder TDE_07 for three consecutive days with
original load curve profile, the lower curve (red triangles) represents the PV g
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demand increased but was compensated by the enhanced
PV generation. On Tuesday, a clear day with high solar
irradiation levels, the demand was high and so was the
solar generation profile. On Wednesday, a heavily overcast
day with a very small contribution of PV generation,
demand was naturally reduced to values below the PV pen-
etration level considered. On that day, not much PV gener-
ation was available, but neither was it necessary to
guarantee that the maximum demand limit previously
defined was not exceeded. These three days show the high
correlation between demand and solar availability.

We found that the feeder with the greatest peak reduc-
tion potential is also the one that presents the smallest
PV-LOLE value. This feeder is located in a commercial
region of the city (feeder ID # CQS_11) with a historic
peak demand value of 9533 kW, so that the penetration
level of our simulated PV system is 10.5%. Fig. 2 shows
the plot with the ‘‘demand without PV’’ and the ‘‘demand
with PV’’ values for feeder CQS_11, which presents the fol-
lowing information:

(i) Over the 2.5 years analyzed (over 20,000 demand
points), only in 51 events were the demand values
higher than the historic demand peak minus PV power
(9533 � 1000 kW = 8533 kW). For feeder CQS_11,
the highest demand peaks occurred in March, one of
the hottest periods in the region. This small number
of high demand values confirms the high summertime
energy consumption in this commercial region.

(ii) Over the same period, only in nine events was the
demand with PV value higher than 8533 kW. This
corresponds to a PV-LOLE value of 3.6 h per year
(0.04%).

(iii) Five failures occurred in these 2.5 years, correspond-
ing to a PV-LOLP value of 2.0 failures per year: two
failures with duration of 1 h, two with duration of 2 h
and one with duration of 3 h over a 2.5 years period.
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Fig. 2. Highest demand events over the 2.5 years period for feeder CQS_11 and the peak shaving effect of adding 1000 kW of PV generation to limit
demand peaks in a commercial region.
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(iv) The highest demand with PV value was 8840 kW
(worst case). This corresponds to a POPR = 69.3%
or, in other words, the PV generation, in the worst
case, supplied the equivalent of 693 kW of the
1000 kW PV installed capacity.

(v) Observing the demand and the demand with PV val-
ues, we can conclude that there is a high correlation
between demand and solar intensity in this commer-
cial area urban region.

(vi) When we add 1000 kW to each of the ‘‘demand with
PV’’ points (curve labeled ‘‘Demand with PV +
1000 kW’’ in Fig. 2), we can observe that the PV gen-
eration offsets the points of high loading by its nom-
inal power. We can, thus, say that, except for the nine
failure events mentioned previously (3.6 h per year),
the PV generation reduced the higher demand points
by approximately 100% of the nominal installed PV
power.
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Fig. 3. Highest demand events over the 2.5 years period for feeder TDE_07
demand peaks in a mixed commercial/residential region.
The behavior of all the other analyzed feeders with day-
time demand peaks is similar to the behavior of the
CQS_11 feeder. Fig. 3 shows the values obtained for feeder
TDE_07, which supplies the University region where the
BIPV system used to generate the data presented here is
installed. The historic demand peak value of the TDE 07
feeder is 9524 kW, and only in 133 events were the demand
values higher than 8524 kW (9524 � 1000 kW). Out of
these 133 points, 112 could have been entirely supplied
by the PV generation, so that the ‘‘demand with PV’’ values
would be shifted below the 8524 kW value. The highest
demand with PV value was 9017 kW (worst case), corre-
sponding to a POPR = 50.7%.

Table 1 shows the feeders with the best PV-LOLE and
PV-LOLP values. For all the seven feeders shown, the
quantity of high demand values (values higher than the his-
toric demand peak minus 1000 kW) is very small, varying
from 51 (feeder CQS_11) to 181 (feeder TDE_04). The
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Table 1
Seven of the selected urban feeders with daytime peaking demand, and the
corresponding PV-LOLE, PV-LOLP, and POPR values

Feeder Failures Quantity of
demand values
greater than
demand peak
minus 1000 kW

PV-LOLE
(h)

PV-
LOLP
(events)

POPR
(%)

CQS_11 9 51 3.6 2.0 69.3
ICO_07 12 54 4.8 2.0 70.9
ICO_08 20 79 8.0 3.2 52.0
ICO_11 28 98 11.2 4.4 50.7
ICO_12 21 111 13.3 6.3 41.6
TDE_04 24 181 9.6 5.6 62.1
TDE_07 21 133 8.4 4.8 50.7
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PV-LOLE values, varying from 3.6 to 13.3 h per year and
the POPR values varying from 41.6% to 70.9%, indicate
that, for these seven regions of the city, the use of a
1000 kW PV power plant could significantly reduce the
demand peaks with a very small probability of PV supply
failures. Moreover, for the PV penetration levels recom-
mended in this study, this small probability of PV supply
failures will not necessarily lead to the feeder failing to sup-
ply the grid.
4. Conclusions

In this work, we have studied the behavior of grid con-
nected, building integrated photovoltaic solar energy con-
version in the urban environment of a metropolitan area
in a Brazilian state capital, aiming at maximizing the ben-
efits of the distributed nature of PV generation. The use of
PV power plants strategically sited in urban areas can
reduce significantly the summer demand peaks in regions
where the load reflects commercial customers demand for
midday air conditioning. The small quantities of partial
failures, or instants where the PV could not completely sat-
isfy its assigned fraction of the total demand, indicates the
additional capacity benefit that a feeder will have from the
PV generation plant on top of the energy benefit. We
observe that, except for the very few events when PV could
not supply its share of a particular feeder load – from 3.6 h
(0.04%) to 13.3 h (0.15%) per year for the seven selected
feeders presented-PV generation reduced the higher
demand points by nearly 100% of the nominal installed
PV power. If these PV-LOLE and PV-LOLP values are
acceptable for a specific feeder, we can consider the PV
plant as a dispatchable power source with nearly 100% of
its nominal power.

When planning solar photovoltaic systems in the urban
environment, the methodology presented can be used to
install these building integrated PV generators in an opti-
mum sequence and maximize the benefits of these clean,
quiet, and distributed mini-power plants. With the more
widespread use of BIPV systems and the consequent cost
reductions resulting from larger production volumes, PV
siting optimization tools should play an important role in
making the cost of solar electricity more competitive with
conventional grid power, evidencing the hidden benefits
of solar photovoltaic generation.
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