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Abstract 
The present paper focuses on the heat transfer problem that 

describes the heat conduction effects in an OPGW submitted to 

short-circuit. An analytical solution is proposed which accounts 

for the effect of the temperature gradients in the aluminum 

covered steel wires, and the contact thermal resistance in the 

effective contact surface between the fiber extruded aluminum 

tube and the aluminum covered steel wires. The numerical results 

are compared with results previously obtained and reported in the 

54th IWCS Conference, for an OPGW with armored steel wires 

with the same dimensions. The analytical solution is expressed in 

terms of integral equations, which can be numerically solved in 

terms of the heat flux, as well as the temperature of the tube and 

the wires. The present approach is appropriate and effective to 

make design parameter sensibility analysis as well as for 

parameter estimation of the thermal contact resistance. The 

numerical results reported here show that the aluminum layer of 

the steel wires are very effective in reducing the electrical 

resistance of the cable and therefore, the temperature gradients in 

the steel wire as well as the temperature increase in the aluminum 

tube.  

Keywords: OPGW, Short-circuit; unsteady heat-transfer. 

1. Introduction 
A novel design of OPGW manufactured with aluminum covered 

steel wires and aluminum alloy is reported in [1]. The authors 

pointed out the advantage of mixing aluminum covered steel wires 

and aluminum alloy wires to increase the current carrying 

capacity. The current carrying capacity of an OPGW depends 

mainly on the electric resistance of its conductor components, as 

is the case of the extruded aluminum tube and the armored wires. 

As is shown in [2, 3], the maximum temperature achieved in the 

extruded aluminum tube depends not only on the electric 

resistance of the conductors, but also on the thermal contact 

resistance between the armored wires and the tube, and the 

thermal conductivity of the material of the armored wires. The 

mechanical design of an OPGW should take in to account the 

maximum temperature achieved in the tube in order to prevent 

annealing. During the short-circuit it may happens that the 

differential strain of OPGW components may brake the aluminum 

tube or may lead to mechanical damage of the armored wires 

(bird-caging). An optimized OPGW should be designed in such a 

way that for a given short-circuit current, a minimized temperature 

rise should be achieved at the end time of the short-circuit, in 

order to reduce differential thermal strain. The electric current of 

the OPGW focused here is assumed to be distributed in parallel 

association through the tube, the aluminum cover of the wires, 

and the steel wires themselves.  

Therefore, thermal effects caused by temperature gradients as well 

as by the covering layer thickness should be taken into account, in 

order to investigate the effect of the electric current on the 

temperature variation of each conductor with time. As made in 

[3], in order to simplify the present analysis, it is further assumed 

here that the electric resistance of the wire is evaluated as a 

function of the average wire temperature over its cross section. 

2. Basic Equations 
In the present analysis the skin effects due to the intensive short-

circuit current are neglected. The skin effect for an OPGW as 

focused here, according to [4], may result in a temperature 

gradient around 10oC over the cross section of the extruded 

aluminum tube. This temperature gradient is around 4% of the 

maximum temperature expected in the aluminum tube. It is 

assumed here that the heat loss at the outer surfaces of the 

armored wires to the surrounding medium is neglected. The optic 

fibers gel inside the extruded aluminum tube is assumed to have 

very low thermally conductivity, so that the inner surface of the 

extruded tube can be consider to be insulated. The temperature 

gradient over the cross section of the tube is also neglected. 

 

Figure 1. Cross section geometry of the OPGW  
 

The mathematical approach given in [3] is used here for analyzing 

the conjugate heat conduction problem. Both the aluminum 

covered wire (a) and the uncovered wire (b) are supposed to be in 

thermal contact with the tube, but in no thermal contact with each 

other. The effective thermal contact angle for both wires (a) and 

(b) is assumed equal to o  as shown in Figure 1.  

2.1 Aluminum Tube 

The energy balance for the tube (i), by assuming no thermal 

gradient over the cross section of the tube is shown to be 

governed by the following dimensionless equation [5, 6, 7], 
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The Joule heating source term of equation (1) can be obtained by 

assuming parallel association of tube (i), wires (a) and (b), and the 

aluminum cover (c). Since the Joule effect is assumed to be 

uniformly distributed over the volume of the conductors, it can be 

assumed that the electric resistance of each conductor is evaluated 

at its average temperature over the cross section according to the 

equation )(fRR 20 , where f  is the temperature depended 

electric resistivity function. This assumption is justified by 

experimental results [3]. In terms of the physical variables, the 

dimensionless equation for ip  can be written as follows [6],  
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the length of tube (i) corresponding to one turn of the wires 

around the tube aN , bN , and ac NN   are the numbers of 

wires (a) and (b) and cover layer (c), respectively,   represents 

the specific mass, c  represents the specific heat, 20R  represents 

the electrical resistance at 20oC, 
20  represents the electrical 

resistivity at 20oC, and k  represents the thermal conductivity. 

2.2 Covered wire (a) 
The energy balance in wire (a) is governed by a differential 

equation which can be written in dimensionless form as follows 

[3, 6], 
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where ar/r , 
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The initial conditions for i and a  are given by, 
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From the overall energy balance in wire (a) it can be shown that the 

average temperature over the cross section of the wire can be 

expressed as  
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From equation (5) it follows that the initial condition for equation 

(6) is 00 )(a . 

2.3 Uncovered wire (b) 
Similarly to equation (4), for wire (b) the following equation 

holds, 
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where br/r  ,  
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The initial condition for b  is given by, 
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From the overall energy balance for wire (b) it can be shown that the 

average temperature over the cross section of the wire can be 

expressed as  
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From equation (8) it follows that the initial condition for    

equation (9) is 00 )(b . 

The heat flux at the thermal contact interface between the wire (b) 

and the tube (i) is related to a Biot number by the following 

equation [3, 6],  
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for o 0 , where bbbib krhB   is the Biot number, bh  is 

the heat transfer coefficient related to the effective heat transfer 

contact area between the wire and the tube. The heat flux is 

assumed to vanish for  o . 

2.4 Covering layer (c) 
Since the material of the layer (c) has high thermal conductivity it 

can be assumed that there is no thermal resistance in the radial 

direction. Therefore the diffusion equation reduces to a one-

dimensional equations in terms of the circumferential variable 

2/)rr(s ac  .  The details of the derivation of the mentioned 

equation, accounting for the heat flux respective to wire (a), and the 

heat flux at the interface of thermal contact between the layer (c) and 

the tube (i) is reported in [6]. The following equation is obtained  
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The initial condition associated to equation (11) is given by  
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Because of the symmetry of temperature distribution over layer (c) 
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By assuming perfect thermal contact between the wire core (a) and 

the covering layer (c), no temperature discontinuity exists at the 

contact interface. Therefore  

),(),,( ca  1                       (14) 

for  0 .  

The heat flux at the interface of thermal contact between layer (c) 

and tube (i) is related to the Biot number by the following 

equation [6],  

                  )(),,(B),( icicc   1           (15) 

for o 0 , where cccaccic kd/)rr(rhB 2 is the Biot 

number, ch  is the heat transfer coefficient related to the effective 

heat transfer contact area between the wire and the tube. The heat 

flux is assumed to vanish for  o . 

The overall energy balance in layer (c), leads to the following 

differential equation [6], 
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The initial condition for the above equation, according to equation 

(12) is given by 00 )(c .  

The solution of equation (4) with the initial condition given by 

equation (5) is obtained by the method of Green’s functions for 

the Neumann problem, as presented in Appendix A. The 

mathematical background can be found in [8]. The temperature 

distribution at the outer surface of the wire, ),,1( a , according 

to equation (A6) of Appendix A can be written as follows,  
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where 
n
m is the root of the derivative of the Bessel function of first 

kind of integer order )(J n
mn   ; ...2,1,0n .  
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Similarly, the solution of equation (7) with the initial condition 

given by equation (8) for the boundary condition of prescribed heat 

flux b  is given by, 
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In a similar way, the solution of equation (11) satisfying the initial 

condition given by (12) can be expressed as follows, 
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The boundary condition given by equation (14) can be imposed by 

the Galerkin condition as follows, 
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Similarly, the boundary conditions given by (10) and (15) can be 

respectively imposed by the Galerkin conditions as follows, 
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The ordinary differential equations (1), (6), (9), and (16) and the 

boundary conditions given by (24), (25), and (26) can be solved in 

terms of the unknown functions i , a , b  , c , na , nb ,and 

nc , for N,....,,n 21 , where N  is arbitrarily chosen in order to 

reach a given accuracy. A numerical solution can be obtained by 

reducing the boundary conditions to integral equations, with the 

help of the series expansions given by equations (17), (20), and (23).  

The integral equations and the respective system of algebraic 

equations, expressed in terms of the unknown heat flux 

coefficients and the unknown temperatures i , a , b , and c  

are presented in Appendix B. 

3. Discussion of Results 

3.1 Predicted results 
Two types of cable are analyzed. The first one is the cable OPGW 

13,4 06 FO manufactured by Prysmian, which consists of ten 

armored zinc coated steel wires. The second cable is the OPGW 

12,4 48 FO manufactured by Prysmian, which consists of mixed 

armored aluminum covered steel wires and aluminum alloy wires. 

In order to present and analyze the predicted results, the OPGW 

13,4 06 FO will be taken as reference. The predicted results 

respective to the case of five mixed aluminum covered steel wires 

and five aluminum alloy wires are compared with the predicted 

results corresponding to the case of ten steel wires. It is assumed 

that the wires as well as the tube have the same geometrical 

configuration and size as for OPGW 13,4 06 FO. The electrical 

and the thermophysical proprieties of the materials of the cables 

were supplied by Prysmian.     

The parameters b and c  are defined in Appendix B, where 

c  can be expressed as  /FB oococ 2 , where  

)dr(c/thB caaacoco  2 . The parameter b can be 

expressed in terms of c  as   

22 aaacaccccb rc/)rr(dc   .  

Figure 2 illustrates the effect of the contact angle o  on the 

maximum temperature achieved in the tube, as a function of the 

dimensionless thermal contact resistance parameter oB . The 

thermal contact resistance parameter oB  is chosen to be 0.3, 

which is the numerical value experimentally determined from  

short-circuit tests of  OPGW 13,4 06 FO, as reported in [3].  

 

 

Figure 2. Maximum temperature achieved in the tube for 

the case of ten aluminum covered steel wires, for various 

values of the contact angle o  , 0cc r/d   ,  and 

10.r/d cc    
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For the sake of comparison of the predicted results, oB  is assumed 

to be constant for both, the heating and the cooling time periods of 

the short-circuit test. As will be seen later, this parameter varies with 

time during the cooling period.   

Figure 2 shows that the maximum temperature achieved in the tube 

is sensible with oB  for values around 0.3, for all aluminum cover 

layer thickness ratio cc r/d  up to 0.1. Figure 2 also shows that the 

limiting-curve corresponding to vanishing contact angle is pretty 

close to curves corresponding to the small contact angle size of the 

cable tested and reported in [3], which is around 35/ . Since the 

limiting-case corresponding to vanishing contact angle can be 

chosen to represent the real cases, only the especial cases 

corresponding to vanishing contact angle are presented in the next 

figures.   

Figure 3 illustrates the effect of the aluminum cover layer thickness 

on the maximum temperature achieved in the tube, as a function     

of oB .  

 

Figure 3. Maximum temperature achieved in the tube for 

the case of ten aluminum covered steel wires, for various 

values of cc r/d  

 

Figure 4. Temperature rise of the aluminum cover layer 

(c)   and the steel core (a)  at the end time of 

the short-circuit, for the case of ten aluminum covered 

steel wires 

The effect of the aluminum layer is to reduce the maximum 

temperature achieved in the tube, for any value of the thermal 

contact resistance number. This also holds for the experimentally 

determined value of oB equal to 0.3, for all cover layer thickness 

tested. The effect of the layer thickness is to increase the wire 

temperature at the end of the heating process, as illustrated in 

Figure 4. This effect compensates the decrease of the maximum 

temperature achieved in the tube.  

Figure 5 shows the effect already observed in the preceding figures, 

for the temperature variation with time, for the tube, wire steel core, 

and the aluminum cover layer. The average cross section 

temperature of the steel core (a) and the aluminum cover layer (c) 

are shown to be pretty close, for all time considered.  

 

Figure 5. Temperature variation with dimensionless time 

ct/t  ; s.tc 50 , for the case of ten aluminum 

covered steel wires (a), for 0cc r/d   , 

10.r/d cc   , and 30.Bo   

Figure 6 illustrates the case of five aluminum covered steel wires 

alternated with five aluminum alloy wires. The overall effect of the 

aluminum cover layer (c) on the maximum temperature achieved in 

the tube is similar to that shown in Figure 3.  

 

Figure 6. Maximum temperature achieved in the  

tube for the case of five aluminum covered steel wires  

and five aluminum alloy wires, for various ratios of  

cc r/d  
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However as Figure 6 shows, the maximum temperature reduction 

due to the aluminum cover layer is more effective in comparison to 

the case illustrated in Figure 3. 

Figure 7 shows that the temperature achieved in the aluminum alloy 

wires at the end time of the short-circuit test, is pretty close to the 

temperature achieved in the tube. This is also shown in Figure 8, 

which illustrates how effective are the aluminum alloy wires in 

reducing the maximum temperature achieved in the tube.  

 

 

Figure 7. Temperature rise of the wires at the end time of 

the short-circuit for the case of five aluminum covered 

steel wires and five aluminum alloy wires  

 aluminum cover (c);   steel core (a);  

 aluminum alloy (b) 

    

 

Figure 8. Temperature variation with dimensionless time 

for the case of five aluminum covered steel wires (a) and 

five aluminum alloy wires (b), for 0cc r/d , 

10.r/d cc  , and 30.Bo   

 

Figure 9 shows the comparison of predicted results of the maximum 

temperature achieved in the tube for both cases analyzed. The 

maximum temperature reduction for the case of five aluminum alloy 

wires is greater than the maximum temperature reduction for the 

case of ten aluminum covered steel wires. 

It should be remarked that the maximum temperature achieved in the 

tube is less sensitive in respect to parameter oB  in the second case. 

 
Figure 9. Comparison of the maximum temperature 

achieved in the tube for the case of ten aluminum 

covered steel wires  and the case of five aluminum 

covered steel wires and five aluminum alloy wires  

 

3.2 Comparison with experimental results 
The description of the short-circuit test as well as the fault current 

test of OPGW can be found in [9]. The comparison of the predicted 

results with the experimental results obtained from short-circuit tests 

of OPGW 13,4 06 FO is shown in Figure 10. The results obtained 

from a simplified model that accounts only for the effects of the 

thermal capacitance of the tube and the wires (TCM model as 

described in [5]) are also plotted. It is shown from this figure that 

the simplified model underestimates the maximum temperature 

achieved in the tube. The simplified model also underestimates the 

temperature of the tube during the cooling time period. For the 

present model oB  is fitted against the experimental values of the 

tube temperature. 

 

Figure 10. Predicted temperature distributions in the tube 

and the wire fitted piecewise with parameter oB , 

compared with the experimental results of  the 

temperature in the outer surface of the tube, for 

s.tc 50 and kA.I 77  

 

While in the heating time period the wires show to be in good 

mechanical and thermal contact with the aluminum tube, it is not the 
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case in the cooling time period. During this time, the cable 

oscillation due two its fast thermal expansion, may reduce the 

pressure of the wires on the aluminum tube, and therefore reduces 

the effective thermal contact. 

Figure 11 shows the predicted results plotted against the 

experimental results obtained form short-circuit tests of cable 

OPGW 12,4 48 FO. The cable has four aluminum alloy wires 

(AAW) of diameter equal to 2.67 mm and seven aluminum covered 

steel wires (ACSW) of the same diameter. The outer diameter of the 

aluminum tube is 7.1mm.    

 
Figure 11. Predicted temperature distributions in the tube  

and the wires, fitted piecewise with parameter oB , 

compared with the experimental results of  the 

temperature in the outer surface of the tube, for 

s.tc 50  and kA.I 89  

 

The parameter oB  is fitted against the experimental values of the 

tube temperature. It is found that the best fitted value of  oB  for the 

heating time period is 0.4, for which Km/kW.h o
24757 . 

For the cooling time period 20.Bo   for s.t 42  and 10.Bo   

for s.t 42 . Its worth to mention that for the heating time period, 

the numerical value obtained for  oB  is close to its numerical value 

experimentally determined for the case of cable OPGW 13,4 06 FO. 

Figure 11 shows that the present model overestimates the steady-

state limit temperature by 15oC. The temperature deviation may be 

explained by the fact that there is a cooling effect of the wires, due 

to the cable oscillation during the cooling time period. It should be 

remained that for the adiabatic condition as assumed in the present 

theory, the predicted steady-state limit-temperature depends only on 

the total energy stored in the cable. On the other hand, the cooling of 

the cable due to its oscillation induced by the short-circuit current, 

depends strongly on the wires thermal conductivity. The cooling 

effect is expected to be much more intense for OPGW 12,4 48 FO, 

because of the higher thermal conductivity of both, the aluminum 

alloy wires and the aluminum cover layer, in comparison to the 

thermal conductivity of the zinc coated steel wires of cable 13,4 06 

FO.  

 

4. Conclusions 
The heat transfer effects due two the heating caused by short-circuit 

of an OPGW composed of armored aluminum covered steel wires 

and aluminum alloy wires is analyzed. The thermal effect caused by 

the aluminum covering layer as well as the aluminum alloy on the 

maximum temperature achieved in the extruded tube is investigated. 

It is shown that the thermal contact resistance in the interface of 

effective thermal contact between the tube and the wires may play an 

important role in the design of this type of conductor. It is shown 

also that the aluminum alloy wires are much more effective in 

reducing the maximum temperature achieved in the aluminum tube 

than the aluminum cover layer of the steel wires. The analytical 

solution reported here is highly sensitive with the physical and the 

geometrical parameters of the electric conductors. Sensibility to 

design parameters is an important feature for thermo-mechanical 

design of OPGW, as well as for experimental characterization and 

validation of design parameters.    
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Appendix A - Solution by the Green’s Function 

Method 
The Green’s function for the Neumann problem associated to 

equation (4) and initial condition by (5) of the text, according to 

the dimensionless variables taken here, is the solution of the 

following partial differential equation [8],  
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satisfying the following boundary conditions,  
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and the initial condition given by  

0),',';,,( g                       (A4) 
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The Green´s function physically means a 2D temperature 

distribution over a semi-circle region, caused by a concentrated 

infinite heat source located at the point located at the coordinates  

 and   , applied at time   , under the condition of vanishing 

heat flux at the boundary of the region.  

The solution of equation (A1) satisfying the boundary conditions 

(A2) and (A3) and the initial condition given by equation (A4) is 

the following [6]. 
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where nJ ; ,...2, 1, 0n  is the Bessel function of the first kind of 

integer order and 
n
m  are the eigen-values, which are the roots of 

0)(' n
mnJ  ; ,...2, 1, 0n .   

The solution of equation (4) with the initial condition given by 

equation (5), for the boundary condition of prescribed heat flux 

),(a  at the interval [0, ] and vanishing heat flux at the 

interval [  , ] is the following, 
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By replacing g from equation (A5) in (A6) the following 

equation is obtained  

 

 

 

'd) ','()'ncos()ncos(

)(J) n(

)  (Je

)(J

)  (J
eF

d,,,p),,(

a

n,m
n
mn

n
m

n
mn

'F

  

  

  

  
m

o
mo

o
mo'F

oa

cbaiaa

oa
n
m

oam



















  























  















1
22

0 0
1

0

1

4

22

2

20

     (A7) 

Appendix B - Integral Equations and Numerical 

Solution  

By replacing a given by equation (17) and c  given by equation 

(23) in equation (24) and by performing the integrals in the angle 

 , it leads to the following integral equation  
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for 0p  and 
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for N,...,,p 21 . 

By replacing b  given by equation (20) in equation (25), and by 

performing the integrals in the angle  it leads to  
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for 0p  and 
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for N,...,,p 21 ,  

where 
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By replacing c  given by equation (23) in equation (26), and 

performing the integrals in the angle  it leads to  

 





 




















 











 














0

1
0

0

2

2

2

d),,,(p
F

d))()((e
n

nsen

d
))()(()(

cbaici
oc

n
nanc

Fn

o

o

oaoc

c

oc

oc   (B5) 

for 0p  and 
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for N,...,,p 21  

where )rr(dc/teh/FB caccccccoocicc   22 . 

In order to solve the above equations numerically, in terms of the 

heat fluxes as functions of bai ,,  , and c , the heat flux 

unknown functions )(n ; n = 1, 2, .. , N are approximated by 

polygonal functions. For each n , )(n  is expressed by a tent-

function as defined below. 
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while for the sub-interval [ 1, jj  ] 
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where ja is unknown. A polygonal element construction is shown 

in Figure B.1 where jj a)(  . 

Let us define pjjpa a)(  , pjjpb b)(  , and 

pjjpc c)(  ; ,...,j 21 ; N,...,p 21 . Because of the initial 

conditions, 00 1  ppa a)( , 00 1  ppb b)(  and 

00 1  ppc c)( ; N,...,p 21 . By replacing the heat flux 

tent-functions in the integral equations, the integrals of the 

exponential functions in   at each sub-interval of  , are 

rearranged in the following matrix entries, 

  

 

Figure B.1. Composition of tent-functions for polygonal 

is approximated by discretization 
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; kj  and 
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; 1 kj , where M1 and   jj ; M,....,,j 21 , 

and  M  is the number time intervals. 
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where m  and 
n
m  are related to the eigen-values of the 

boundary value problems of heat conduction. 

The following matrix equation can be obtained from equations 

(B1), (B2), (B5) and (B6) [6], 
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where )a,...,a,a,a(a Nkkkok 21 , )c,...,c,c,c(c Nkkkok 21 , 
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where )(AB kj
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The following matrix equation can be obtained from equations 

(B3) and (B4), 
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where )(AB m
m

kj
b
kj 
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The ordinary non-linear differential equations (1), (6), (9), and 

(16) of the text are solved by the Runge-Kutta method, together 

with the matrix equations (B13) and (B18), iteratively and 

recursively in the variable  . The detailed description of the 

numerical scheme is also reported in [6]. For the limiting-case 

respective to 0o , 
o

o

p

psen




 and pqA  appearing in the 

above matrix entries are proved to be equal to the unity for any 

p , q  = 1,2,…, N . For this special case, it is assumed that the 

limit of the parameter b for o  tending to zero is regular and 

physically meaningful.  
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