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Abstract

The transient heat transfer in a solid undergoing
ablation is a nonlinear problem, which involves a
nmoving boundary that is not known a priori. In this
paper the ablation problem is solved with constant
material properties and time-variable heat flux using
the integral method. An approximate, analytical, closed
solution is obtained. The results are compared with
solutions presented by the literature at constant and
variable heat flux.

Nomenclature
Heat Penetration Depth

Ablation Depth

ut)  RelativeDepth

t, Ablation Time

T, Ablation Temperature
T, Initial Temperature

k Thermal Conductivity
r Density

G Specific Heat at Constant Pressure
I Heat of Ablation

n Function Degree

qq(t) Heat Flux

n Inverse Stefan Number
t Auxiliary variable
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X Space Coordinate

t Time Coordinate

Introduction

Transient heat conduction in a solid undergoing ablation
represents an area of great technological importance.
Problems of this type are inherently nonlinear and
involve a moving boundary that is not known a priori.
According to Chung® and Zien?, the exact analytical
solution for transient heat transfer in a solid undertaking
ablation is very difficult and practically nonexistent.
Only numerical and approximate analytical solutions
have been made available and they necessarily require
considerable numerical computation, even if a
simplified model of the problem is used in the study.
This work makes use of the integral method® to get a
closed form, approximate, analytical solution for the
phase-change ablation problem with time-variable heat
flux.

Literature Review

Landau® first proposed an idealized ablation problem
and solved it for the case of a semi-infinite melting solid
with constant properties and with its face heated at
constant rate. He applied numerical integration for his
solution.

Sunderland and Grosh® presented the same problem but
described a method of solution using finite differences
for the case where the surface is heated by convection.
Biot and Agrawal® used the variational method for the
analysis of ablation with variable properties. Blackwell”
used the finite volume method with exponential
interpolation functionsto solve Landau’ s problem.

Storti® considered a one-phase ablation problem as a
two-phase Stefan one by the introduction of a fictitious
phase occupying the region where the material has been
removed. He solved this problem by the finite element
method.
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Goodman® solved Landau’s problem using the heat
balance integral method with a quadratic temperature
profile for a constant heat flux. Zien? solved Landau’'s
problem for two specific forms of heat flux with a
refined heat balance method using exponential
temperature profiles.

Physical Model

When a satellite, returning from its orbit around the
Earth, reaches the atmosphere, a complex set of
physical-chemical phenomena takes place at its
surroundings. The majority of these phenomena are
extremely exothermic and a part of generated heat

achieves the satellite’'s surface, increasing its
temperature.
To protect the satellite payload from critica

temperature rises, a thermal protection system is used.
The ablation protection system is one of them, and it is
based on the phasechange phenomenon that occurs on
the ablative material surface. For the present analysis
the following simplifications are considered, as
suggested by Landau®*:

. The heat transfer problem is considered one-
dimensional.

. The ablative material properties do not present
considerable thermophysical modifications during
the heating process, until it reaches the ablation
temperature.

. All physical-chemical phenomena are considered
known and given by atime-variable heat flux;

- All material, liquid or gas, produced during ablation
is immediately removed from the surface and do not
influence the thermal behavior of the protection
system or of the satellite.

Based on these simplifications the physical model
adopted consists of a semi-infinite ablative material
which is heated in its surface, by a spatially uniform
and time-variable heat source. In the beginning, the
heat penetrates the material, raising its temperature in a
region close to its surface. The length of this region is
called heat penetration depth, dp(t), where d,(0)=0-
The heating continues until the front face temperature,
T(dA(t),t). reaches the ablating temperature level (T.)
and causes the start up of the surface ablation. During
the ablation, part of the heat is used to keep the surface
at the ablating temperature (T(dA(t),t):TA) and the
remaining heat is used to change the phase of the

ablation material. The phase-change phenomenon
consumes part of the virgin material. The length of this

2

part is denominated ablation depth, dA(t), where
dA(tA):O and t, is the ablation time, i.e,, the time in
which T(dA(tA),tA) reaches T,. Figure 1 shows a
schematic of this physical model.

T
at(t)
TA
To
X
dA
Removed Heated Non-heated
Material Material Material

Fig.1— Physical model adopted

Analytical M odel

General Formulation

The following one-dimensional partial differential heat
transfer equation is used to determine the ablation rate
and the heat penetration depth:

co JT0t) _ 9 & 1T(ct)o, (01)
Pt X X g

This equation is integrated in X from d,(t) to d,(t).
The results are rearranged using Leibniz's integral
formula, resulting in:

d Y dd,(t)
r cpadA%T(x,t)dx- r e, T(do(t)t) dF; + @
ot )0l L T ATy
dt 1x |x=dp(:) LR N

The following temperature profile is considered:

T(xt)= A(t)ge%g +B(t), (03)

where A(t) and B(t) are time-dependent parameters used
to adjust the adopted temperature profile to the problem
solution.
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Pre-Ablation Problem

The following conditions can be considered for the pre-
ablation period:

dd,(t)

- =0@d,(t)=d,, (04)
] kﬂTﬂ(Qt) =qty) x=d, (1) (05)
ITx) g L x=d,(t), (06)

Tx
T(xt)=T, , x=d(t), (07)
T(xt)=T, S t=ty- (08)

Actually, Eq. 4 does not establishes a boundary
condition, it just estates that no time variation of the
ablation depth is equivalent to the situationwhere d,, is

considered a constant value.

Solving Eq. 3, for A(t) and B(t) using the boundary
conditions 5 and 6 indicated above, it is possible to

obtain
)= Q80000 ) - x 6"

kn do(t)- d,

(09)

Substituting Egs. 4, 5, 6, 7 and 9 in Eq. 2, solving the
integral and rearranging it, one can obtain:

o, Q@0 d)" 1 o ()-q,) (10)
dtg Kn G
)

dd,(t)_
dt

LS

Simplifying Eq.(10),

d Ri4t)(do(t)-d)° O (11)
e dté kn(n+1) q(l(t)
The solution of Eq. 11 with t, =0 and ds(t;)=d, yields
o=t [P Sy @

With the substitution of Eq. 12 in Eq. 9, and after some
simplification, the following expression is obtained:

3

n

q) C'd + ‘/ga‘% i)t ; (13)

-
2 ok n(n +1) 0l 9
g ondt)dt <

a0 :

T(xt)=

As T(d,(t,)t.) =T, , after some algebraic manipulation
of Eq. 13, one gets

n

(h+1)

In the case of constant heat flux, qt)=q¢, Eq. 14 can
be rewritten as

rc, k(T,

To)%= adt,) )t (14)

n T.-T.)2
(n+1)rcPk(Aqm:20) T .

According to Carslaw and Jaeger, the t, expression
obtained for an infinite solid heated in its surface by a
constant heat flux is:

(16)

P, o @y To)o
Pyr o BTl
=gk G e

Through the comparison of Egs. 16 and 15, one can
obtain

n=-—P _=3659792369 . (17)

Therefore, for the pre-ablation period, t£t,, one has

1 q€t) @ (t)- da)@do (1) x
T(xt)=} kn €3, 1)- d
1T x>d,(t)

i +T,, x£d,(t) (18)

Ablation Problem

For the ablation period,
conditions can be considered:

the following boundary

T(x1)=T, X =d,(t) (19)
TT() _ ) ) 99al) - 20

K o =qt)-r| - » x=d,(t), (20)
- kﬂT(X't) =0 v x=d,(t) (21)

x
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T(xt)="T » x=d, t)- (22)
The boundary given by Eqg. 20 represents a heat
balance between the net heat conducted through the
virgin material, which is given by the difference
between the heat source and the heat used to ablate the
material. Solving Eq. 3 using Egs. 19, 21 and 22, one
can write

@ d,(t)- x ©

T TG G T

With the substitution of Egs. 19, 21, 22 and 23 in Eq. 2
and in Eqg. 20, it is obtained, respectively:

(23)

' c%[(n- To)@s () da®)+To @ (0)- d.0)]  (24)

dd, dd,(t) _ kn(T.-To
-1 ¢ T, dt(t)+r T, dt(t)‘(dp((t)- dA(tg) '

kn(TA - To) (25)

r1(d(t)-d. 1)

Collecting the similar terms and simplifying Eq. 24,
one gets

44,0 _ at)

dt rl

%(dp(t)-d()) (n+1)d‘f,t()- (p(nt)ﬂ()n())’ >

Equation 25 is, then, substituted in Eq. 26 and after the
collection of similar terms, one can obtain

( o(t)- da(t) =

kn(n+ (T, -

rl{do(t)-

(27)
T )@ |
At Scp T

0. (n+1adt),

12
T) P ri

t
A new parameter t , defined ast ° Mdt is

introduced. Both penetration depths (d,(t) and d,(t))

can be written as a function of this new variable.
Hence, it is possible to rewrite the previous equation as

dt (28)

4

Rearranging it,

—(dst
dt (29)
kn(T,-T,) & |

60008 1) 5

dP¢ )' dA(t ), the

I
CP(A'TO)
one can finaly write the

Defining the relative depth as uft )°

number as n° and

F@)° kn(TA;q'I'f[.J)(n +1),

inverse Stefan

equation as

duf)_ ﬂD_ (30)

dt  uft)

Physically, the inverse Stefan number indicates how
much energy is consumed at the ablation phasechange
process in comparison with the thermal storage capacity
of the material. The relative depth represents the length
of the heated material, as shown at Fig. 1. Actualy, a
temperature increase is observed in this region of the
material due to the heat flux boundary.

Solving Eqg. (30) for u(t), from O to t , and using the
initi iti kn(T,- T,
initial condition (0) =y, =d,t,)- d,(t,)= gAt o),

A
calculated from the algebraic manipulation of Eg. 9,
after the application the boundary condition given by
Eq. 19, for t=ta, one gets:

ut ) = F()gLambertw:gaeuA -1z expée':uA

ot ou o
FO 5
(3D
Substituting the expressions for U, t and F(t), and

after some algebraic manipulation, the following
equation is obtained:

ut)= kn(Ta- To )b +1)

q4t)
4 Tzeqltt)- aft, ) n o 0 9 (32)
g ngq(t n+1 (n+l)El : :

| o) o) o d g
éLamberthe qu(t T hn+1)2f 1i
¢ i S ) S
& i &, 0D % 5
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Now, getting back to Eq. 25 and introducing thet and
uft ) expressions, the following equation is resulted:

ddA(t )_ 1 kn(TA - To) (33)

dt " (n+] (n+1)qdt)uf)

Solving Eq. 33, using Eq. 31 and wsing the initial
condition :d,,(0)=d,, one gets:

t  kn(T,-T,),

dA(t)=dA+m W

&
Up-t -
&

8t H‘-%:

_t_w
oy FOR
(39)

After several simplifications and using Eq. 32 to
shorten the expression, it is possible to obtain:

d, ¢ )_nt +U,- ult )+ : (35)

= d
h+Dh+1) A

To obtain ds(t), Equation 35 can be substituted in the
u(t) definition expression, resulting in:

In the time-domain, Egs. 32, 35 and 36 assume the
following forms, respectively,

c

(0)= kn(T, - T)0 +1)

‘qﬁétz” 4.) 0
2] | o &t)- q¥t, n 9>< :J 9Q (37)
: %«@ ) Fede |-
¢ I ‘( q%t, n o I
gLambertW_{ qu(t I +1) t(n +1) :'y+ -
§ imgmmwmm)g :
g I & rikn(T,- T)n+1a3 p
a, (1) +n£ﬂ‘mdt kn(ra-To)  kn(T,-To)
’ T1h+) (n+dp+Pa€) [+Ja€) "(38)
83 .:_aaqq(t) q‘(t) n QX Iu 0
g ::: qa@](tn_+qa(t )n + nﬂ 0: *
gLambertV\},: 9; qdt, )b +1) m _;,+1:,
§ 1% o) ouegar 5
§ Pogr kn(TA-TO)(n+1)dp 5
5

n )t
.+ ol o)

ri n+12 n+ 0 +1)qdt,)
(o3 - DT

iceq%t)- o%t,) n o U
06,0+

8

h+105
i aeq“ét)- q%,) n &
LambertW { gqi(t ) +1) (n +1) :'y+1_,

P8 +1)ad) gadt) ot

i g_rlkn(T T)(1+1)?3;

Al O

DO O O O O O O VO WO

(39)

Qe )

Therefore, for the ablation period, t3
for the temperature profile:

ta, one can write

At ® ablated material,

x£d
ae(t
%

|T

T(xt)—,T T, $+T x>d,(t)andx <d, (t)

dA
t

(40)

In conclusion, for the determination of the temperature
profile and of the heat penetration depth, Egs. 18 and
12, in this order, are used for the pre-ablation period.
For the ablation period, Egs. 38, 39 and 40 must be
applied for the determination of the ablation depth, the
heat penetration depth and the temperature profile.

Results
Constant Heat Flux Case

The analytical model developed in this work was firstly
used to solve the ablation problem proposed by
Landau’, for the ablation of Teflon as presented by
Blackwell7 with a constant heat flux case. The material
properties and test parameters used are given in Table 1.
Blackwell’s’ results were obtained from the graphic
presented in the paper using the software SACRID®.
The agreement between the present model and
Blackwell’s’ results is very good, as can be observed by
Figs. 2 and 3. A function of degree 7 (n=7) was
assumed for the temperature distribution. Figure 2
shows the temperature profiles for both models (present
and Blackwell’s’), while Fig. 3 shows the percentage
error, defined as (T oreentvork = Totaciwmt)/ T slacwell, @S @ fUNCtioN
of position and time. The maximum error observed is
lessthan 7 %.
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Table 1 — Teflon Thermophysics Properties and Test Figure 4 presents the heat penetration d.(t), the

Parameters ( q@= 250Btu/ ft >s) ablation d ¢ ) and therelative u(t ) depths asafunction
of time. It can be observed that, after a transient period,
r 1200,/ ft® I 1000Btu/ Ih,, the system achieves a dynamic equilibrium where the
K 3.60° Btu/ fisR T, 1500R relative depth reaphes a constarjt value. This means that
the heat penetration and ablation depths move at the

Cr 0.3Btu/Ib,, R T 536 R same speed

+ Heat Penetration Depth
2 Ablation Depth

1400+ *+ Relative Depth

0.008

12004

+ Blackwell's
— Present Work

Position (ft)
o
=1
5

10004
0.004

Temperature (R}

8004

3
»*
T,

0.0029+

600 0P H 3 3 i

Time (s)

0.002 0.004 0.006 0.008
Position {ft)

Fig. 4 —Position of d,(t), d,(t) and u(t) for the constant
Fig. 2 — Comparison of temperature profilesfor the heat flux case
constant heat flux case.

Time Variable Heat Flux Case

5 The theoretical results obtained for the time variable
heat flux are compared with literature numerical datain
this section. The g-moment scheme as presented by

Zien® is used in this comparison. This scheme is a

30s refined heat balance method that makes uses of an

2 4o exponential temperature profiles to develop a set of
- m differential equations that must be numerically solved.
Dgu L L This numerical scheme was implemented in a personal

computer and the results compared.

It should be observed that Zien's? main interest lies on
the boundary properties, i.e, on the ablation depth and
4 on ablation speed, rather than on the heat penetration
depth or on the temperature profile. So, in order to get a
good comparison between the present and Zien's

i T i i results, the ablation depth equation and its derivative

Posttion ft (speed) are made non-dimensional. As aready

observed, the ablation depth in the present work is

Fig. 3 — Error (%) between the results reported by obtained from Eq. 38. This expression is divided by its
Blackwell” and those in the present work. limit (expressed by Eq. 41), to obtain what Zierf

denominated of ablation position. The ablation speed is
given by the derivative of Eq. 38 on time, divided by its
limit (expressed by Eq. 42).

6
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limd,,(t)= %dt (41)
jim 9940)_ at) (42)
@y dt  (+1)

It is important to observe that both models, developed
in this work and Zien's’, present the same ablation
position and ablation speed limits (Eq. 41 and 42)
which represents the physical situation where the
temperature profile has already achieved steady state
conditions and all the incoming heat flux is used in the
ablation phenomena.

Zien's®> model was numerically implemented using
Maple®V software. Four boundary heat flux cases has
been analyzed, using a power-law distribution, as
shown in Table 2, for two different values of the
Stephan number, which represent two different
materials with different capability to change its phase
(burn) and to storage the heat inside the virgin material.

Table 2— Case parameters for comparison with Zien

results®
Casel gqe=t n=01
Case?2 ql=t n=1
Case 3 ge=t3 n=01
Case 4 gqe=t3 n=1

The parameter n used in the theoretical model was
computed wsing the ablation time, t,, obtained by

comparison between the Carslaw and Jaeger® equation
(Eq. 43) for the surface temperature of a semi-infinite
solid subjected to the power-law boundary heat flux,
q¢=F,t™?, and Eq. 14, for the heat fluxes cases

presented in Table 2. The obtained parameters are
presented in Table 3 for the cases described in Table 2.
The case 1 and 2, as well as 3 and 4, presents the same
ablation time because they have the same boundary
heat fluxes.

gn .0
Ge—+1=

(T, - )_Fo k62 g, (2 (43)
A o/~ A
kirece Ggaf_n+§9
€2 2g

Table 3— n Parameter and Ablation Time

Case | n Parameter | t, (Present) t, (Zien's®)
1/2 | 7,589068110 (1,208993966 s| 1,211413729s
3441 155462191914 208205637 51 1.208504777 5

20000113

7

Figure 5 shows the ablation speed for cases 1 and 2.

From both cases, it can be seen that the present model

achieves the ablation speed limits faster than the Zien's
data but presents a smaler dumping effect. It's
important to note that, with the increase of n , there’'s an
increase in the dumping time for both solutions.

qu=t
Caselin =01

Case2:py =1

MNan-Dimensional Ablation Speed

1. Present Work (Case 1)
2. Present Work (Case 2)
3 Zien's Work (Case 1)
4. Zien's Work (Case 2}

2 4 7 Jle2
Logarithmic Time

Fig. 5 — Comparison of ablation speed for the cases 1
and 2 between present model and Zien's? models.

0.8
qe=t

06 Caselipn =01

Case2:py =1

MNon-Dimensicnal Ablation Position

04

1. Present Work (Case 1)
02 2. Present Work (Case 2)
” 3. Zien's Worl (Case 1)
4 Zien's Work (Case 2)

3 q 7 Te2
Logarithric Time

Fig. 6— Comparison of ablation position for the cases 1
and 2 between present model and Zien’s? models.

The present work’s ablation position shows, at Fig. 6,
larger values than the Zien's? for any time indicating
that the ablation position should be located at an
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advanced location. Therefore, the use of the theory
proposed in this work lead to a conservative result.

In the same way, Figs. 7 and 8 show the ablation speed
and ablation position for cases 3 and 4. The same
analysis done before is valid . The only new important
fact is that the change in the heat flux expression
degree has changed the height of the ablation speed
curves. It indicates, as expected, that the heat flux
degree has adirect influence at the dumping effect.

1 3
o

o
o

qe=t*

Cae3:n =01

=
o

Casedip =1

Mon-Dimensional Ablation Speed

o
i

1. Present Work (Case 3)
2. Present Wark (Case 4)
02 3 Zien's Work (Case 3)
4. Zien's Work [Case 4)

2 3
Logatithric Tirme

Fig. 7— Comparison of ablation speed for the cases 3
and 4 between present model and Zien’s? model.

qe=1t3
Case3:n =01

04 Casedin =1

Man-Dimensional Ablation Position
I

1. Present Work (Case 3)
2 Present Work (Case 4)
3. Zien's Work (Case 3)
4. Zien's Work (Case 4)

2 3
Logarithric Time

Fig. 8 — Comparison of ablation position for the cases 3
and 4 between present model and Zien’s> model.
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Conclusion

In this paper the ablation problem was solved
considering constant material properties and time-
variable heat fluxes using the integra method. An
approximate analytical closed solution was obtained and
compared with numerical solutions presented in the
literature for both constant and time variable hest
fluxes. The comparison shows good agreement between
the behavior of the present and literature solutions. The
present results would improve if experimental data were
available for comparison. It isinteresting to note that the
present solution is algebraically closed, i.e, it does not
need numerical implementation. Modifications for
different types of materials or heat fluxes and can be
easily implemented to treat any new situation with
constant and time variable heat fluxes.
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