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This paper presents an analytical solution for théneat conduction problem within a finite
length plate material, considering a prescribed heaflux or prescribed temperature
condition at one side of the plate and a prescribetheat flux or prescribed temperature
boundary at the opposite side, using the heat balae integral method with an n-
temperature profile. The temperature solution obtaned by this method is compared with the
classical literature solutions.

I. Introduction

ONDUCTION heat transfer is a very important phenoareto engineering science. Since Fourier's worft “L

Théorie Analytique de la Chaleur”, many mathematmthods has been developed to help understantband
predict the thermal behavior of different materiaMowadays, the heat conduction is still an intémgs
phenomenon, presenting several challenging probkmh as ablation or phase change, temperaturendiepte
thermal properties, time-variable boundary condgias well as general coordinate approaches.

The authors of the present paper along the years haing studying analytically the one-dimensiohaht
conduction and ablations problems using electrisalogy (Braga et al. 2002and the Heat Balance Integral
Method (HBIM). Braga et al. (2003presented the semi-infinite conduction problermgishe HBIM, subjected to
prescribed time-variable heat flux boundary conditon its free surface. These same authors (Briagh 2004}
revisited this same problem, subjected to the $te€ace time-constant heat flux boundary condiiioa finite solid
with an insulated opposite surface. In both papgbespre-ablation and ablation phases were coreid&rom these
previous works, it was observed the need to batiderstand of the effect of the selected tempergitofiles used
at the HBIM on the accuracy of the obtained sotutio

The HBIM, as presented by Goodman (19643 used to obtain an approximate analytical smiutThe
Goodman’s method is based on the Karman-Pohlhamssgthod and, as expressed by Goodman (£983)
although approximate, [the method] provides acouradequate for engineering purpose and has thenalist
advantage of reducing the problem from one reqgitfire solution of a partial differential equatievhich is relative
difficult, to one requiring the solution of an ondry differential equation, which is relatively g&sThe accuracy of
the HBIM solution is directly related to the choioé a basic temperature profile that is used. Hisadly, the
polynomial approximations are the most chosen fe®fout, as observed by Goodman (1964). there is no a
priori guarantee that increasing the order of thigrpmial will improve the accuracy”.

At the present paper anprofile is used at the HBIM as the temperaturérihstion inside a heated finite solid
subjected to various boundaries conditions comtminatwhich are presented at Table 1. In this t&i@deft column
represents the boundary conditions applied onitfie side of the solid (B surface), which can basidered semi-
finite (SF) or finite. For the finite case, thelfaling boundary conditions can be considered: pilesd temperature
(PT), prescribed heat flux (PH) or convection (The first line indicates the boundaries conditiofdeft side of
the body (A surface), which can be the same ofitite side plus ablation (A). Some of these boupdandition
combinations were already presented at previouksvBraga et al. (2003)Braga et al. (2003)and Braga et al.
(2005§7) and will not be discussed here. The present psqiges the X marked combinations whose solutioas a
compared with classical ones.
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Table 1. Boundary condition combinations.
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I.  General Physical Modeling

The case of a one dimensional finite solid body enafl an isotropic material with constant properties
considered. The body is assumed to be at a coristak temperatureTo) until the start up of the heating process
on the A surface. This heating can occur due acplexl heat flux 4" rs), a prescribed temperatur@s£) or a
convection condition at the mentioned surface. Withenprescribed heat flux condition occurs the Aaae, the
temperatureTsy can be calculated. Similarly, prescribing the penature condition, the A surface heat flgk{y)
can be obtained. The heat is conducted inside #erial, developing two different sections: the tedaregion,
which the temperature is affected by the surfageosed heat and the cold region where the mataghbt felt the
presence of the surface heating, remaining atritialitemperature. The position of the interfastwieen those two
regions isdg and its distance from the A surface positidg) (s U which is called the heat penetration depth. When
the interface position reaches the end of the nadtee, 4z = L, the boundary condition of the B surface must be
considered and its temperature starts to changereTdre, for the B surface, four possible boundasemi-finite
solid, prescribed heat fluxq(pg), prescribed temperatur@pg) and convection and two variables: the B surface
temperature Tsg and the B surface heat flug’sg), can be obtained, similar as A surface. Figumgrelsents the
physical modeling scheme of the boundaries comibinatthat are considered at the present work aosetfrom
past papers that are physically important to tles¢emt development.

lll.  Mathematical Modeling
In this section, the mathematical models used ¢dipt the thermal behavior of the above mentiorsdransfer
problems are developed.
A heat balance over the body leads to the followied) known transient differential heat equatiom ([L)).

pcC a_T :i ka_T 1)
ot ax( aX
Using the following variables:
k
a=— (a)
pcp
X
n= T (b)
(2)
_at
T ©
T-T,
f=—2°
T.—To @

wherea is the heat diffusivityk is the heat conductivity; is the densityg, is the heat capacity, is an arbitrary
reference length (usually the length of the solidy), = is the dimensionless Fourier timgjs the dimensionless
space variableTr is an arbitrary reference temperature @i$ the dimensionless temperature; and after some
algebraic manipulation, one gets the following digienless equation, which is the non-dimensionahfof Eg.

(2):

* The paper presents a time-constant heat flux bayrzbndition in a finite solid with an insulatefpmsite surface.
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Figure 1. Physical modeling scheme.
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Based on the Heat Balance Integral Method (HBIMj, B) is integrated between two points, definedgasnd
Jg. The pointd, is the non-dimensional equivalent of the paiptas thedg representsls. Using the Leibniz rules, it

is obtained:
2]
da _[Hd” _QB%.,.QAﬂ: 98 _[9¢ , ()
dr 3, dr dr on 5 on 5
3
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Now a function profile has to be chosen to be usate dimensionless temperature. In the presqrémphe Eq.

following equation is used:
4= ﬂ +B ﬂ +C. (5)
55 - JA 55 - JA

It is important to note that this equation is defironly in the space betweeia anddg, the region left t@,, i.e
n < da has no physical meaning, and the region righigtdy > Jg) is set equal to zero which means that the
temperature is still equal to the initial vallig Substituting Eq. (5) in Eq. (4) one obtains:

d(( A B do, do An
—||—+=+C|(3,-3,)|-C—=+(A+B+C)—2= .
dr((n+1+2+ j(B A)j dr+( et )dr (0, - 0,) ©

This equation is considered, from now on, the nejnation for developing of the solutions. It cotssisf three
terms at the left hand side: the first one is #ite of the accumulate energy on the body, the skand third ones
are related to the change of energy due to théagdisment of thég andda frontiers, respectively. Finally, the right
hand side term is the net flow rate of energy betwide two frontiers.

To solve the main equation (Eq. 6), the boundamydiions have to be rearranged. Firstly they ase-n
dimensionalized, using Eq. (2), and then Eq. (5)sed to obtain the profile boundary conditiongfulkfor the
HBIM. This procedure is shown for each boundaryditton considered in the present work.

A. Prescribed Temperature (PT) — Dirichlet Condition
The Prescribed Temperature (PT) is the simplesndbany to transform. The valugdrepresents the prescribed
temperature value at the positiar, while Tpg represents the prescribed temperature value atzthespectively:
X=A,>T=T,,, (7
X=0, >T=T,. ®)
Using the transformations indicated at Eq. (2) aunbstituting Eq. (5), Egs. (7) and (8) becomesfotiewing
equations, which are ready to be applied to theMipBioblem:
n=0, > A+B+C=6,,, ©)
n=0z>C=6,. (20)

B. Prescribed Heat Flux (PH) — Neumann Condition
The Prescribed Heat Flux (PH) boundary conditiomsrepresented by:

oT _
X :AA > _kﬁ = Ooas (11)
oT _
X :AB > _kﬁ = Opg- (12)
Appling the transformations indicated by Eqgs. (2 5), they take the forms, respectively:
An+ B
=0, > — = , 13
11=0, 5 -0, Qpa (13)
n=0g~> B =Q 14
B 58 —JA PB " ( )
4
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In these equations, tlg parameter represent the heat flux; the positiveegindicate that the flux is at the X
direction. TheQ variable applied in Egs. 13 and 14, are associaftd a relative heat flux, based on the ratio
between the incident heat flux and a reference thegtdefined ak(Tiz — To)/L, as expressed by:

__ Geal __ Ol
R A R R oy (15)

C. Semi-Finite (SF) — Half-Space Condition

The Semi-Finite (SF) boundary condition is usethatinitial time solutions of the problem, when thaint 45
has not reached the back face of the solid. S¢;,dhe next equation is used as boundary conditiero(prescribed
heat flux and prescribed temperature equal tortti@litemperature conditions):

oT
X=A89 —ka—x=0andT=T0 (16)

Similarly to the other conditions, these equatiars manipulated, using Egs. (2) and (5) parametessijting
in:

Nn=0g >B=0andC=0 a7)

IV. Heat Balance Integral Method Solutions

In this section, Eq. (6), with the boundaries ctinds combinations presented at Fig. 1, is solvealygically
using the HBIM.

* Semi-Finite Solid
The Semi-Finite Solid condition has already beevetied in previous works (Braga et al. (20p%)nd the
main results are reprinted in Table 2, as theyasal as the starting point for the finite solidusiohs.

Table 2. Summary of the semi-finite solid solutions

Prescribed Heat Flux Prescribed Temperature
Surface _ Qpa 55 =
Temperaturg A= n A= Op,
Heat T
Penetration Oy = n(n+3) 7 IQpAdT O = m:l)jepﬁdf
Depth Qpa Gon” 0
q’_‘) n n
% () 2 9 2.2
s n +1
8% =\/ Qea——— _[QPA - QP/?” 0=06,,1- e :7
ED' n(n+1)[Quadz 2n(n+1)[6,,2dr
0 0
T, T, 2
Transition ¢ _ Qpa [j2_52 Fp 24 _ 6 2 <2
Time () !QPAdT = n(n+1)('- N £9PA dT——Zn(n+1)('- N
5
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» Finite Solid

The Finite Solid condition indicates that thg point has already reached that back surface odtiid and,
consequently the distance betwekrand4g, as thel variable are constant values. From this momenasmlready
described at the Physical Model section, the oppdsiundary conditions have to be considered. @omfany of
the boundaries combinations at the finite solice¢cfise main equation (Eq. 6) can be simplifiechsform:

dA dF,
——+FA=F,—2
dr dr (18)

whereF; andF, are time-constant expressions drdis a time-dependent function that varies accordimghe
boundaries combinations. The solution of this eiguas:

J'F exp (r-7,))dT + A, |exp(-F, (7 -7,,))., (19)

wherer, is the transition time which indicates the instéuait the heat penetration depth reaches the hafdce A,
is the value for thé parameter at the transition time afd which has the same naturerpis a dummy integration
variable.

A. Prescribed Temperature/Prescribed Temperature Case

The Prescribed Temperature boundary considerdueatack surface, which corresponds to Eq. (1Q)sésl to
calculate theC parameter, resulting in:

C=6. (20)

Similarly, the Prescribed Temperature boundaryhat front surface, Eq. (9), is used to obtain anliexp
expression for thé8 parameter. It is obtained with the substitutionEaf. (20) on Eq. (9), which, after some
manipulation, results in:

B=6,,—-6.;—A (21)

Substituting Egs. (20) and (21) in Eg. (6), aneérafearranging it, one gets the following ordindifferential
equation (ODE):

dA, 2(n+1)n

+1) d
dr (n-1)u? A:(n )_(gPA+HPB) (22)

(hn-1dr

Comparing Egs. (22) and (18) ti¥s terms can be obtained. After appropriate subgiiteaton Eq. (19) the
following solution is obtained:

w008 0t donf 207 Yo 205

Now, the dimensionless temperature profile, giverieh. (5), can be obtained, after the substitutibigs. (20),
(21) and (23), resulting in:
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B. Prescribed Temperature/ Prescribed Heat Flux Case
The Prescribed Heat Flux boundary considered ab#uk surface, which correspond to Eq. (14) is used
calculate the Eq. (3 parameter, resulting in:

B=QpgU (25)

For this case, the Prescribed Temperature bouratattye front surface, Eq. (09), is used to obtairesplicit
expression for th€ parameter. Substituting Eq. (25) on Eq. (09) dtel aome manipulation, one finally gets:

C=6,,—Qzu—-A (26)

Substituting Egs. (25) and (26) at Eq. (6) andratarranging the resulting expression, one geisdhowing
ODE:

dA+n+1A_n+1i(9PA_QpBuJ -

dr w ' n dr 2

Comparing Egs. (27) and (18), tRderms can be obtained. Making the appropriatetdutisns on Eq. (19) the
solution bellow is obtained:

A= rn—ﬂi(HPA —Mj exp(%jd T+A, exp(— Mj (28)

n dr 2 u?

Tm

The dimensionless temperature profile can be obthafter the substitution of Egs. (25), (26) ang) (& Eqg.
(5), resulting in:

T

~Qre (53 _/7_U)+ Opa

C. Prescribed Heat Flux/ Prescribed Temperature Case
The Prescribed Temperature boundary considerduedtdack surface, which corresponds to Eq. (10késluo
calculate theC parameter, given by:

C=6,, (30)
The Prescribed Heat Flux boundary at the frontemef Eq. (13), is used to get an explicit expressio theB

parameter. It is obtained with the substitutiorEqf (30) on Eqg. (13). After some manipulation, geés:
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B=Qpu—An (31)

Substituting Egs. (30) and (31) in Eqg. (6), onesgke following ODE, after some manipulation:

dA_  2n(n+1) ,_ 2(n+1) d (QpAu j
+ = — +4
dr  (n(n+1)-2)u*" n(n+1)-2dr\ 2 "

(32)

Comparing Egs. (32) and (18), theerms can be obtained. Making the appropriatetdutisns on Eq. (19), the
solution bellow is obtained:

O e e et L SR e e P

Tm

After the substitution of Egs. (30), (31) and (&8}he dimensionless temperature profile, Eq. %9, following
equation can be found:

QZU a5 +9F'Bjexp(Wjd”A“]eXp(_ ined-a [(58“_”jn _n[a“_”j] (39)

Tm

+Qpa (JB - /7) + 9PB

D. Prescribed Heat Flux/ Prescribed Heat Flux Case
The Prescribed Heat Flux boundary considered abale& surface, given by Eq. (14), is used to cateutheB
parameter, resulting in:

B=QpgU. (35)

The Prescribed Heat Flux boundary at the frontamaf Eq. (13), is used to get an explicit expreséio the A
parameter. It is obtained with the substitutiofeqgf (35) on Eqg. (13), which, after some manipulati@sults in:

A:(QPA_QPB)% (36)

Substituting Egs. (35) and (36) in Eq. (6), afieme rearrangement, one gets the following ODE

dC - (QPA_QPB)_i (QPA_QPB)U +QPBU , 37)
dr u dr( n(n+1) 2
which is easily solved obtaining
— f (QPA _QPB) = _ (QPA _QPB)U QPB u (QPA _QPB)U QPB u
C_;[ . o7 n(n+1) T2 . * n(n+1) T L (38)

m m
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The dimensionless temperature profile is given ky ), after the substitution of Egs. (35), (3@)d&38),
resulting in:

5 i/l _ T(QPA_QPB) =
(QPA QPB) ( u j+QPB(JB ”)+J—u dr

m

_( (QPA_QPB)U + QPB UJ +( (QPA_QPB)U + QPB uj

(39)

n(n+1) 2 n(n+1) 2

V. Classical Solution

In this section, literature solutions, which wik ltompared with the HBIM solutions in the next Eettare
shown. The classical solutions are usually obtainsidg the Laplace Transform Technique (LTT) omgsthe
Method of Separation of Variables (MSV). These téghes are available in many classical conductiat kransfer
books, such as Carslaw & Jaeger (18%8)d Arpaci (1966) among others. From these solutions, it is posdibl
obtain the Green’s Functions (GF), which actuadigresents building blocks for more complex solj@as shown
in Beck et al. (1992Y. In the present paper, the GF method solutionselexted for comparison with the HBIM’s
solutions. These solutions are presented as shgvietk et al. (1992 and the important equations are presented
below.

¢ Prescribed Temperature/Prescribed Temperature

o(n.7)=] HpAi 2mmexp(-m? 72 (-1 )) sin(m7)d T -
oo (40)
[ 6o 2(-1)" mzexp(-m? 772 (7 -7 )) sin(mzn)d T
0 m=1
e Prescribed Temperature/Prescribed Heat Flux:
T o _1\2 _
0(n.7)=[ oy (2m—1)nexp{ _(2m4 1 nz(r—f)] sm((zm 1 nr]jd T -
0 r::l ) (41)
[ QY 2(-1)" exp[ (2m-1) m(r-r )j sm((zm_ )ﬂﬂjd r
0 m=1 4 2
* Prescribed Heat Flux/Prescribed Temperature:
T o _1\2 -
0(7.7)=] Quu Y. 2exp( —@(r—f )] cos((szl)zmjd T+
° rm:l , (42)
f 6., (2m-1)(-12) 17Texp[ —@(T—T )] co{@ﬂ/]jd T
0 m=1

* Prescribed Heat Flux/Prescribed Heat Flux:
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6(1,7)=[ Quut 3. 2Quuexpl(-t 72 (77 ) cosfmmn)d 7+
° e (43)

j. Qes +i 2(~1)" Qug exp(—m? 72 (-7 )) cos(mn)d 7

VI. Comparison between the solutions

In order to make a comparison between the HBIM #ed GF classical solutions, four simple problemes ar
considered. Each one of the problems is relateld arie of the different boundaries combinations. prescribed
heat fluxes, as well as the prescribed temperatatrdbe boundaries are considered time-constathiowdh the
previous development does not make use of thislgioaion.

l. Problem 1: ,, =1 and g5 = 0.
The complete HBIM solution for this problem is

2

_ Ui [2n( )
[1 2n(n+1)r] <yznin+dr ,7<(2n(n+12)*
o(n.7)=1|o n>2n(+1r (44)

exp( (nj;l) - 2(r(\n+_11;1 T]((l—ﬂ)n - (1—/7))+ (1-n) > (2n(n+1)*

and the GF solution is

9(n,r)=§%r;yr’7)(l—exp(— e 7 7)) (45)

Usually the besh value for the HBIM solution can be obtained conmathe heat flux of both solutions at the
same point, usually at the front surface. But firigcedure cannot be applied using the GF solutios tte sin
characteristic of the solution, which vanisheshat boundary and the heat flux result at the sanrd pould be a
fake. In this case, a good option is to use theesamalue obtained for the prescribed temperature taryn
condition at the half-space domain, whicl2i6—2) ~ 1.75 (presented at Braga et al. (2605)

Figure 2 presents three graphics: the first onelfays two surfaces, one for the non-dimensiomaptature
of the HBIM solution and other for the GF soluti@s, a function of the non dimensional distan@nd of the non
dimensional timea. One can see from this figure that it is veryidifft to detect a difference between these surfaces
with exception to the positiop=0. The second figure (b) presents a detail of theedéfice between the solutions
near the;=0 position, and in the third graphic (c) the diffiece between those solutions is shown, both asitunsct
of n andr. The largest difference occurs at the boundarywamishes as increase. The second difference source is
close the transition time period,, and this difference can be explained due the -fieité characteristic of the
solution used at the first dominium region (se &7 < (2n(n+1))* ) of the HBIM. It is important to note that the
difference is less than 6% for the major part ef domain.
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(c) Difference of the solutions (HBIM — GF)
Figure 2. Comparison of the
solutions at problem 1 situation
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Figure 3. Comparison of the
solutions at problem 2 situation
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Problem 2: 6,, =1 and Qy; = 0.
The complete HBIM solution equation for this prahlés:

Y ” <J2n(n+1)r
{1 2n( J <2 L ,r<(2n(n+1)*

n+1)r
8(n.7)= 0 n>J2n(n+1)r (46)
exp[zln —(n+1) rj ((1—/7)” —1)+1 ,r>(2n(nh+12)™
and the GF is:

6(n.7)=3. ) (HXP(‘MH”B "

= (2m-1)7

Similarly to the problem 1 solution, which dealsthwiprescribed temperature at the front surface, the
investigation of then value cannot be performed at the boundary poséimhthe same value used for problem 1 is
employed.

Figure 3 presents three graphics. The first oneliajvs the plotting of two surfaces correspondinthe non-
dimensional temperature of the HBIM and GF solugjoas a function of the parametgrand t. The largest
differences between these solutions are observéteisame position as in problem 1, at the frorflase and at the
opposite boundary, due the transition time in whstdrts the influence of the boundary conditiorthie solution.
The second graph (b) presents a two dimensionaloplthe non dimensional temperature as a funatiothe non
dimensional time for both solutions, at tirel position: one can observe that the GF solutiongine) is early
influenced by the boundary condition, when compawétl the HBIM solution (red line), as explainedfdre; and
at the third graphic (c) it is presented the alsoflifference between those two solutions, in éasersimilar to the
graph (a). The largest difference occurs at thenblaty and vanishes gsincrease. The second difference source is
close the transition time period,, and this difference can be explained due the -fieité characteristic of the
solution used at the first dominium region (se &8}.7 < (2n(n+1))* ) of the HBIM. It is important to note that the
difference is less than 6% for the major part efdomain.

Problem 3: Q,, =1 and .5 =0.
The complete HBIM solution for problem 3 is:

n+l, (1— n(”zj n<yn{n+2)r 7 <(n(n+2))

n n+1)r

6(n.7)=1|o n>nn+Dr (48)

o 200 (0ony -non)eaon) o)

and the GF solution is:

12
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ol )% 8c0{(2m2_1) ﬂﬂj (1_exp[ _ M 2 TD 49)

4T me

From latter work (Braga et al. (200%5)a value oh = z /(4-7) ~ 3.67was suggested based on a comparison with
the half-space classic solution. In the preserg taes same value is considered.

Figure 4 presents three graphics: the first onsl{ajvs the plot of two non-dimensional temperasurdéaces for
the HBIM and GF solutions as a functionrpéndr. It can be shown that the largest difference acatthe front
surface,s = 0. This difference can be better observed by thersk@bot (b), which relates the non dimensional
temperature with the non-dimensional time of the amalytical solutions at the= 0 position. The GF solution is
represented by the blue line and the HBIM solubigrihe red line. With this plot, it can be seen the difference
occurs only at the second dominium region (se Bgr # (n(n+1))*) of the HBIM solution and it occurs due the
selected value, another choice of this value léads better agreement at this part of the solubiginwill increase
the difference at the first dominium region.

The third graphic (c) shows the difference betwdentwo solutions, through a surface similar to phat (a)
graph. The largest difference between solutiorabi&erved at the boundagy= 0 and this difference vanishesas
increases. The second largest difference sourfoeiigl in the region close to the transition timg,due the change
at the dominium region of the HBIM solution. Itimportant to notice that the difference is lessti&o in the
largest region of the domain.

IV. Problem 4: Q,, =1 and Q; =0.
The complete HBIM solution for this problem is givBy the equation:

2

n+i T (1— n(nJ ,/7<1/nin+1ir

n n+1)r 7 <(n(n+1))*

6(n.7)=1|0 7> nn+ D)7 (50)

(1—nf7)“ +T—n(n1+1) > (n(n+2)*

while the GF solution is:

0(n,r)=r+> W(l—exp(—mznzr)) (51)

m=1

In this problem the sanrevalue of the problem 3 is applied because the¢istgpoint of the solution is the same
(half-space with prescribed heat flux).

Figure 5 presents three graphics: the first onelfays the surface plot of the non-dimensional &xatpire of
the HBIM and GF solutions as a functionrpéndz. A difference between the solutions is observediiais due to
the adoptech value; a differenh value would present other differences. It is im@at to note that the good
agreement between the solutions observed at thirsheominium region (se Eq. 50< (n(n+1))™* ) of the HBIM
solution does not persists for the second regidwe. difference between solution increases with ticeeasing non
dimensional time, as it can be observed throughseeond plot (b), that presents a detailed plothef non
dimensional temperature solutions as a functiothefnon-dimensional space, for the non-dimensitine =1.
The GF solution is represented by the blue line tiedHBIM solution by the red one. The third graplt) is a
surface plot of the difference between the two tsahs as a function af andzt. The largest differences happen at
the boundaries and at this position they increasdinae increases. It is important to note that ewdth this
discrepancy, the difference is less than 10% irdtger region of the domain.
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(a) HBIM and GF Solutions

[}

02

(b) Solutions aty = 0 (blue: GF; red: HBIM)
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(c) Difference of the solutions (HBIM — GF)

Figure 4. Comparison of the
solutions at problem 3 situation

14

T T
TR R T
e

=
e
e
e
i

ey
s

(a) HBIM and GF Solutions

(L]

L] 02 04 06 [}

(b) Solutions at = 1 (Blue: GF, Red: HBIM)

s, ;#.‘eg (RS a‘\“
ORISR
etet iy
AN
£ c.:.,+,u‘, it

it

TR "\‘ \\\
s
e
f

IR
i,
'Jr""a:

[N
ALTATERS
Fhglrretats
e -

(c) Difference of the solutions (HBIM — GF)

Figure 5. Comparison of the
solutions at problem 4 situation
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VII. Conclusion

In this paper the Heat Balance Integral Method wsed to solve the heat conduction problem insidme
dimensional finite solid body, subjected to fouifetient combinations of the boundaries conditioks.part of the
method, am degree function was selected as representatitbeofemperature distribution of the material. The
value of then was selected as the same for the parts of thé@wluvhere half-space and finite solid are consde
as previously determinate at Braga et al. (2006)s important to note that the besvalue is not a closed subject
and hard work still is necessary for the developnoéthe method.

Four different cases were solved and their resdtapared with a literature solutions presentingegy \good
agreement. The traditional literature methods a@ctewhile the HBIM are approximate methods. Thel¥B
advantages dealing with linear problems are: 1y safution: the HBIM envolves the solution of ordne ODE
while the exact methods are based on the solutidPDdes; 2) fast calculus: the HBIM solution aretéasto be
obtained than the exact one because it does nehdem any eigenvalue, eigenfunction or seriebrastic; 3) the
HBIM helps to get a better understanding of theseaeffect between the non dimensional parametedsttan
obtained solution physics.
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