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Abstract

This work presents theoretical and experimental studies on a passively actuated bi-metallic heat switch for space

applications. The working principle of the heat switch is based on the differential thermal expansion of distinct metals.

Analytical one-dimensional and two-dimensional heat conduction models are developed to predict the thermal resis-

tance of the heat switch, which is a function of temperature. A non-dimensional parametric analysis is performed in

order to study how the design parameters affect the total thermal resistance of the heat switch. The theoretical models

are also compared with experimental data obtained from a prototype of the heat switch. The agreement between theory

and experiments is good.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Heat switches are devices that present variable ther-

mal resistance. Many different heat switch configura-

tions have been developed for spacecraft applications

over the last three decades [1–5]. Each configuration is

based on a different working principle, but all of them

were developed for applications in cryogenic systems of

satellites. The heat switches proposed by Frank and

Nast [1], Nast et al. [2], Naes and Nast [3] and Van Oost

et al. [4] were developed to couple radiation sensors to

cryogenic refrigerators. When the radiation sensor is

operating, it is necessary a low thermal resistance be-

tween the sensor and the refrigerator in order to keep the

sensor temperature as low as possible. In this situation,

the heat switch provides a good thermal coupling be-

tween the radiation sensor and the cryogenic refrigera-

tor. However, sometimes it is convenient to disconnect

the sensor from the refrigerator, as for example in re-
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dundant refrigeration systems, in order to avoid para-

sitic heat loads coming from refrigerators turned off.

Under these circumstances, the heat switch must provide

a high thermal resistance between the sensor and the

deactivated refrigerator.

The gas-gap type heat switches proposed by Frank

and Nast [1] and by Nast et al. [2] are similar. They

consist basically of two cylindrical pieces separated by a

small gap, which is filled with a conductive gas. The

thermal resistance between the two cylindrical pieces is a

function of the amount of gas that fills the gap. These

heat switches are actively actuated, i.e., they require

external energy to operate.

The heat switches proposed by Naes and Nast [3], by

Van Oost et al. [4], and by Milanez and Mantelli [5] are

based on the differential thermal expansion of distinct

metals. Although based on the same working principle,

these configurations are quite different from each other.

The bi-metallic heat switches are passively actuated, that

is, they do not require external energy to operate, and

the thermal resistance is function of the mean tempera-

ture level of the heat switch. The heat switches of Naes

and Nast [3] and Van Oost et al. [4] were also developed

to couple radiation sensors to cryogenic refrigerators in

redundant systems.
ed.
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Nomenclature

a shaft radius [m]

b heat switch external radius [m]

c disk thickness [m]

d nut 1 thickness [m]

e nut 2 thickness [m]

E Young�s Modulus [Pa]

f isothermal section measured in the z-axis [m]

h isothermal section measured in the x-axis
[m]

hc contact conductance [W/m2K]

ht thread conductance [W/m2K]

I Bessel function of first kind

k thermal conductivity [W/mK]

kh ¼ 2kAkB=ðkA þ kBÞ [W/m K]

K Bessel function of first kind

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ m2
2

p
, combined roughness mean

absolute slope [ ]

MT assembly torque [Nm]

P contact pressure [Pa]

Q cryogenic sensor heat load [W]

q heat flux [W/m2]

r coordinate axis [m]

R thermal resistance [K/W]

T temperature, temperature filed of tip 1 [K]

z coordinate axis [m]

Greek symbols

a thermal expansion coefficient [K�1]

b temperature field of tip 2 [K]

d see Eq. (22) of Table 1

e� dimensionless differential thermal expansion

parameter, see Eq. (38)

U ratio between the thread and the disk–nuts

contact conductances, see Eq. (36)

Cn see Eq. (19) of Table 1

m Poisson�s ratio
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
1 þ r2

2

p
, combined RMS roughness [m]

H temperature field of nut 1 [K]

n temperature field of nut 2 [K]

W see Eq. (17) of Table 1

Xn see Eq. (15) of Table 1

Subscripts

A, B contacting bodies

c contact

d Disk

h harmonic mean

n nut

m material, arithmetic mean

s shaft

t thread

0 order of Bessel functions, at reference tem-

perature (mounting temperature)

1, 2 order of Bessel functions, contacting bodies,

nuts 1 and 2

1D one-dimensional model

2D two-dimensional model

Superscript

* dimensionless parameter
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The heat switch proposed by Milanez and Mantelli

[5] has been initially developed to attach cryogenic sys-

tems to the satellite structure. However, it can also be

used in other applications, such as to couple radiation

sensors to cryogenic refrigerators, representing an al-

ternative device for the other heat switches mentioned

before. A schematic drawing of the heat switch is shown

in Fig. 1. It consists of two nuts, a threaded shaft and a

disk. The disk has a shape similar to a thick washer and

is placed between the nuts. The shaft is made of a low

thermal expansion coefficient material, and the disk is

made of a high thermal expansion coefficient material.

One nut is fixed to the satellite structure and the other to

the cryogenic sensor. During the heat switch assembly,

at room temperature, a controlled torque is applied to

the shaft. The torque ensures a rigid mechanical cou-

pling between the sensor and the satellite structure,

which is necessary during the launching of the satellite

(Fig. 1(a)). When the satellite achieves its final orbit, the

temperature of the sensor drops to cryogenic levels.
During the cooling of the sensor, the differential con-

traction of the shaft and of the disk makes the contact

pressure between the nuts and the disk to decrease. As a

consequence, the thermal contact resistances at the disk/

nuts interfaces increase, increasing the total thermal re-

sistance of the heat switch. When the contact pressure

reaches zero, the total thermal resistance of the heat

switch reaches its maximum value. In this situation, the

heat switch is decoupled (Fig. 1(b)), minimizing the heat

load coming from the satellite structure to the cryogenic

system.

The total thermal resistance of the heat switch is a

function of temperature. If the thermal expansion coef-

ficient of the disk is larger than the thermal expansion

coefficient of the shaft, the thermal resistance increases

with decreasing temperature. Otherwise, the thermal

resistance decreases with temperature.

This work has three main objectives: to present the-

oretical models to predict the total thermal resistance of

the heat switch, to perform a parametric analysis of the



Fig. 1. Working principle (a and b) and thermal boundary conditions (c) of the heat switch.
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theoretical model so that a design methodology can be

established, and to compare the theoretical models with

experimental data obtained from a prototype developed

in the laboratory.
2. Thermal modelling

Fig. 1(c) shows a schematic of the geometry and the

boundary conditions of the problem. The heat switch

has a cylindrical shape, with an external radius b. The
radius of the shaft is a. The thicknesses of the nut 1, disk
and nut 2 are d, c and e, respectively. A heat load Q
comes from the satellite structure and crosses the heat

switch. At z ¼ 0 the heat switch is assumed to be at a

uniform temperature T1, which corresponds to the

cryogenic sensor operation temperature. At z ¼ cþ
d þ e, the temperature is also assumed to be uniform

and equal to T2, which corresponds to the temperature

of the satellite structure. The lateral walls, at r ¼ b, are
assumed to be adiabatic, because there is no convection

heat transfer in vacuum environment and the heat
switch can be wrapped in multilayer insulation blankets

(MLI) to avoid radiation heat transfer. The inner radius

of the disk is slightly larger than the outer radius of the

shaft so the thermal contact between the two elements is

ineffective, that is, heat transfer is negligible between the

two.

The contact conductances between the disk and the

nut 1 and between the disk and the nut 2 are hc1 and hc2,
respectively. These conductances are assumed to be

uniform in the interfaces. The thread contact conduc-

tances of nuts 1 and 2 are ht1 and ht2, respectively. These
contacts are assumed to be cylindrical, because the di-

mensions of the thread are much smaller than the dia-

meter of the shaft. The thread contact conductances are

also assumed to be uniform along the thread.

In the next two subsections, two analytical models

are developed to predict the total thermal resistance as a

function of the mean temperature of the heat switch: a

two-dimensional model and a one-dimensional model.

The total thermal resistance Rt and the mean tempe-

rature Tm of the heat switch are defined, respectively,

as:
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Rt ¼
T2 � T1

Q
ð1Þ

Tm ¼ T2 þ T1
2

ð2Þ
2.1. Two-dimensional heat conduction model

For the development of the two-dimensional heat

conduction model, it is assumed that the heat flow in the

shaft and the disk ðd < z < d þ cÞ is one-dimensional in

the z-axis. In the nuts and in the shaft tips (z < d and

z > d þ c) the heat flow is two-dimensional. Fig. 2(a)

and (b) shows the thermal models adopted for the nuts

and the shaft tips. The temperature fields are: Hðr; zÞ in
the nut 1, T ðr; zÞ in the tip 1, bðr; zÞ in the tip 2 and nðr; zÞ
in the nut 2. The one-dimensional heat fluxes crossing

the shaft and the disk are qs and qd, respectively. To
solve this problem, we have to find the coupled tem-

perature fields Hðr; zÞ, T ðr; zÞ, bðr; zÞ, nðr; zÞ. Knowing
Fig. 2. Thermal models: two-dimensional (
these temperature fields one obtains the total tempera-

ture drop across the heat switch ðT2 � T1Þ (Eq. (1)). In

steady-state, the temperature fields are obtained by

solving Laplace�s equation. Due to the symmetry of the

problem, Laplace�s equation is given by:

1

r
o

or
r
oT
or

� �
þ o2T

oz2
¼ 0 ð3Þ

The temperature fields of the tip 1 and of the nut 1 are

obtained by solving the equation above subjected to the

following boundary conditions (see Fig. 2(a)):

ks
oT
oz

¼ qs 0 < r < a

kn1
oH
oz

¼ qd a < r < b

8>><
>>: at z ¼ d ð4Þ

T ¼ H ¼ T1 at z ¼ 0 ð5Þ

oT
or

¼ 0 at r ¼ 0 ð6Þ
a, b and c) and one-dimensional (d).
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ks
oT
or

¼ kn1
oH
or

�ks
oT
or

¼ ht1ðT � HÞ

8><
>: at r ¼ a ð7Þ

oH
or

¼ 0 at r ¼ b ð8Þ

Using the method of separation of variables [6], one

obtains the expressions for the two temperature fields as

a function of qs and qd. Table 1 shows the resulting

expressions for the temperature fields of the tip 1 (Eq.

(9)) and the nut 1 (Eq. (10)).

The next step is to compute qs and qd, the heat fluxes
crossing the shaft and the disk which are still unknown.

A sketch of the temperature field of the heat switch is

showed in Fig. 2(c). At z ¼ f , named here the isothermal

section, the temperature of the disk is equal to the

temperature of the shaft. Mathematically, this can be

written as:

2

a2

Z a

0

T ðr; dÞrdr þ qs
f � d
ks

¼ 2

ðb2 � a2Þ

Z b

a
Hðr; dÞrdr þ qd

1

hc1
þ qd

f � d
kd

ð12Þ

where T ðr; dÞ and Hðr; dÞ are obtained substituting z ¼ d
into Eqs. (9) and (10) of Table 1, respectively. The left

hand side of the expression above is the temperature of

the shaft, and the right hand side is the temperature of

the disk, both at z ¼ f . The first term in the left hand

is the mean temperature of the tip 1 at z ¼ d, and the

second term is the temperature drop in the shaft between

z ¼ f and z ¼ d. Similarly, the first term in the right

hand side is the mean temperature of the nut 1 at z ¼ d,
the second term is the temperature drop due to the

thermal contact resistance between the disk and the nut

1, and the third term is the temperature drop in the disk

between z ¼ f and z ¼ d.
The energy conservation principle requires that:

qspa2 þ qdpðb2 � a2Þ ¼ Q ð13Þ

Solving Eq. (13) for qs, substituting the resulting ex-

pression into Eq. (12), and solving for qd, one obtains

the expression for the heat flux across the disk qd as a

function of the isothermal section f , which is given by

Eq. (14) of Table 1.

To compute f , the isothermal section, a similar

procedure can be employed to find the temperature fields

of the nut 2 and of the tip 2 (Fig. 2(b)). In this figure, a

new coordinate system (x-axis) is defined for conve-

nience, where:

x ¼ cþ d þ e� z ð16Þ

Comparing Fig. 2(a) and (b), one can see that the

models are similar. The temperature fields of the tip 2
and nut 2 are obtained by following the same proce-

dure employed to obtain the temperature fields of the

nut 1 and of the tip 1 (Eqs. (9) and (10), respectively).

The expressions for the temperature fields of the nut 2

(Eq. (17)) and of the tip 2 (Eq. (18)) are given in Table

1. Comparing Eqs. (9) and (17) of Table 1, one can see

that they are similar; the main difference is that qs and
qd have opposite signs. This was expected because in

the model shown in Fig. 2(a), qd and qs are in the

opposite direction of the longitudinal coordinate axis

while in the model shown in the Fig. 2(b) they are in

the same direction. The same resemblance can be ob-

served between Eqs. (10) and (18) and between Eqs.

(11) and (19).

Once again, we use the condition that at the iso-

thermal section x ¼ h (which corresponds to z ¼ f ) the
temperatures of the shaft and of the disk are equal.

Similarly to Eq. (12), the following equation is written:

2

a2

Z a

0

bðr; eÞrdr � qs
h� e
ks

¼ 2

ðb2 � a2Þ

Z b

a
nðr; eÞrdr � qd

1

hc2
� qd

h� e
kd

ð20Þ

where bðr; eÞ and nðr; eÞ are obtained by substituting

x ¼ e into Eqs. (17) and (18), respectively. Solving Eq.

(13) for qs, substituting it into the equation above and

solving it for qd one obtains Eq. (21) of Table 1.

The two expressions for the heat flux in the disk qd,
Eqs. (14) and (21) of Table 1, can be solved simulta-

neously for qd and f . The expression for the isothermal

section is then given by Eq. (23) of Table 1. Using

either the left or the right hand side of Eq. (12) one

obtains the temperature drop between z ¼ 0 and z ¼ f .
In a similar way, using either the left or the right hand

side of Eq. (20), one obtains the temperature drop

between z ¼ f ðx ¼ hÞ and z ¼ cþ d þ eðx ¼ 0Þ. Adding

these two temperature drops one obtains the total

temperature drop of the heat switch ðT2 � T1Þ that

appears in Eq. (1). Dividing this temperature drop by

the heat load Q, according to Eq. (1), one obtains the

expression for the thermal resistance of the heat switch.

The final expression for the total thermal resistance of

the heat switch, according to the two-dimensional

model, is given by:

R2D ¼ 1

Q
qs
ks
ðcþ d þ eÞ þ W

kn1
ks

qs
ks

� qd
kn1

� �
 �
kn1
ks

þ a2

ðb2 � a2Þ


 �
8>><
>>:

þ d

kn2
ks

qs
ks
� qd
kn2

� �
 �
kn2
ks

þ a2

ðb2 � a2Þ


 �
9>>=
>>; ð24Þ

where W and d are given by Eqs. (15) and (22) of Table

1, respectively.



Table 1

Expressions for temperature fields, heat flux across the disk qd and total resistance

T ðr; zÞ ¼ T1 þ
qs
ks
zþ 8dht1

p2

kn1
ks

qs
ks

�
� qd
kn1

�
�
X1
n¼0

ð�1Þn

Xnð2nþ 1Þ2
K1

pb
2d ð2nþ 1Þ
� �

I1 pb
2d ð2nþ 1Þ
� �

(
�
K1

pa
2d ð2nþ 1Þ
� �

I1 pa
2d ð2nþ 1Þ
� �

)
� I0

pr
2d

ð2n
h

þ 1Þ
i
sin

pz
2d

ð2n
h

þ 1Þ
i
ð9Þ

Hðr; zÞ ¼ T1 þ
qd
kn1

zþ 8dht1
p2

qs
ks

�
� qd
kn1

�X1
n¼0

ð�1Þn

Xnð2nþ 1Þ2
�

K1
pb
2d ð2nþ 1Þ
� �

I1 pb
2d ð2nþ 1Þ
� � I0 pr

2d
ð2n

h(
þ 1Þ

i
þ K0

pr
2d

ð2n
h

þ 1Þ
i)

sin
pz
2d

ð2n
h

þ 1Þ
i
ð10Þ

Xn ¼ �kn1
p
2d

ð2nþ 1Þ
K1

pb
2d ð2nþ 1Þ
� �

I1 pb
2d ð2nþ 1Þ
� � I1 pa

2d
ð2n

h(
þ 1Þ

i
� K1

pa
2d

ð2n
h

þ 1Þ
i)

þ ht1
kn1
ks

K1
pa
2d ð2nþ 1Þ
� �

I1 pa
2d ð2nþ 1Þ
� � I0 pa

2d
ð2n

h(
þ 1Þ

i

þ K0

pa
2d

ð2n
h

þ 1Þ
i)

ð11Þ

qd ¼
Q

pa2
� f þ W

ks
f�d
kd

þ d
kn1

þ 1
hc1

þ b2�a2
a2

� � f
ks
þ W ðb2�a2Þ

a2ks
þ 1

kn1

h in o ð14Þ

W ¼ 32d2ht1
p3

kn1
aks



þ a
ðb2 � a2Þ

�X1
n¼0

1

Xnð2nþ 1Þ3
K1

pb
2d ð2nþ 1Þ
� �

I1 pb
2d ð2nþ 1Þ
� � I1 pa

2d
ð2n

h(
þ 1Þ

i
� K1

pa
2d

ð2n
h

þ 1Þ
i)

ð15Þ

bðr; xÞ ¼ T2 �
qs
ks
x� 8eht2

p2

kn2
ks

qs
ks

�
� qd
kn2

�X1
n¼0

ð�1Þn

Cnð2nþ 1Þ2
�

K1
pb
2e ð2nþ 1Þ
� �

I1 pb
2e ð2nþ 1Þ
� �

(
�
K1

pa
2e ð2nþ 1Þ
� �

I1 pa
2e ð2nþ 1Þ
� �

)
I0

pr
2e

ð2n
h

þ 1Þ
i
sin

px
2e

ð2n
h

þ 1Þ
i
ð17Þ

nðr; xÞ ¼ T2 �
qd
kn2

x� 8eht2
p2

qs
ks

�
� qd
kn2

�X1
n¼0

ð�1Þn

Cnð2nþ 1Þ2
�

K1
pb
2e ð2nþ 1Þ
� �

I1 pb
2e ð2nþ 1Þ
� � I0 pr

2e
ð2n

h(
þ 1Þ

i
þ K0

pr
2e

ð2n
h

þ 1Þ
i)

sin
px
2e

ð2n
h

þ 1Þ
i
ð18Þ

Cn ¼ �kn2
p
2e

ð2nþ 1Þ
K1

pb
2e ð2nþ 1Þ
� �

I1 pb
2e ð2nþ 1Þ
� � I1 pa

2e
ð2n

h(
þ 1Þ

i
� K1

pa
2e

ð2n
h

þ 1Þ
i)

þ ht2
kn2
ks

K1
pa
2e ð2nþ 1Þ
� �

I1 pa
2e ð2nþ 1Þ
� � I0 pa

2e
ð2n

h(
þ 1Þ

i

þ K0

pa
2e

ð2n
h

þ 1Þ
i)

ð19Þ

qd ¼
Q

pa2
hþ d

ks h�e
kd

þ e
kn2

þ 1
hc2

þ b2�a2
a2

� �
h
ks
þ d ðb2�a2Þ

a2ks
þ 1

kn2

h in o ð21Þ

d ¼ 32e2ht2
p3

kn2
aks



þ a
ðb2 � a2Þ

�
�
X1
n¼0

1

Cnð2nþ 1Þ3
K1

pb
2e ð2nþ 1Þ
� �

I1 pb
2e ð2nþ 1Þ
� � I1 pa

2e
ð2n

h(
þ 1Þ

i
� K1

pa
2e

ð2n
h

þ 1Þ
i)

ð22Þ

f ¼ d þ
ðeþ cþ dÞ dþW

kn1
þ 1

hc1

� �
� ðd þ WÞ dþe

kn2
þ c

kd
þ 1

hc2

� �
ðd þ eÞ 1

kn2
� 1

kd

� �
þ 1

kn1
� 1

kd

� �
ðd þ WÞ þ 1

hc1
þ 1

hc2

ð23Þ
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2.2. One-dimensional heat conduction model

In the development of one-dimensional model, heat is

assumed to flow only in the axial direction of the heat

switch. The thermal contact resistances of the threads

are considered to be infinities. The total thermal resis-

tance of the heat switch is computed as the total resis-

tance of the analog electric circuit shown in Fig. 2(d). In

this analog circuit, the Rm;i are material resistances. The

subscript ‘‘i’’ can be s (shaft), d (disk), n1 (nut 1) and n2

(nut 2). The resistances Rc;n1–d and Rc;n2–d are the contact

resistances between the nut 1 and the disk and between

the nut 2 and the disk, respectively. These resistances are

given by the following expressions:

Rm;n1 ¼
d

kn1pðb2 � a2Þ ð25Þ

Rm;n2 ¼
e

kn2pðb2 � a2Þ ð26Þ

Rm;d ¼
c

kdpðb2 � a2Þ ð27Þ

Rm;s ¼
cþ d þ e
kspa2

ð28Þ

Rc;n1–d ¼
1

hc1pðb2 � a2Þ ð29Þ

Rc;n2–d ¼
1

hc2pðb2 � a2Þ ð30Þ

Combining these resistances according to the equivalent

electric circuit, the overall thermal resistance of the heat

switch, assuming one-dimensional heat flow, is given by:

R1D ¼ 1

p
ksa2

cþ d þ e

"
þ ðb2 � a2Þ

d
kn1

þ 1
hc1

þ c
kd
þ 1

hc2
þ e

kn2

#�1

ð31Þ
2.3. Thermal contact conductance models

Several studies on the contact conductance between

conforming rough surfaces are available in the literature

[7–10]. The model proposed by Mikic [9] for elastic de-

formation of asperities, which is based on the plastic

model of Cooper et al. [8], is used in this work. The

reason for choosing this particular model will be dis-

cussed later. The elastic model of Mikic [9] can be rep-

resented by the following correlation:

hc
kh

r
m
¼ 1:55

P
ffiffiffi
2

p

E0m

 !0:94

ð32Þ

where

E0 ¼ 1� m2A
EA

�
þ 1� m2B

EB

��1

ð33Þ
is the Effective Young Modulus and kh ¼ 2kAkB=
ðkA þ kBÞ is the harmonic mean of the thermal conduc-

tivities of the contacting bodies. The Poisson�s ratio is m,
P is the apparent contact pressure, and r and m are the

combined RMS roughness and mean absolute slope of

the contacting surfaces, respectively.

It is assumed that the contact conductances are uni-

form in the contacting interfaces between the disk and

the nuts. A uniform contact conductance distribution

can be obtained when flat surfaces are pressed against

each other under uniform contact pressure. Although

nearly flat surfaces can be obtained in practical appli-

cations, similar studies [12–14] showed that the actual

contact pressure presents non-uniform distribution at

the interfaces between the disk and the nuts. Near the

shaft, the contact pressure distribution presents a max-

imum value, and decreases as the radius increases.

However, the more rigid the nuts, the more uniform is

the contact pressure distribution. In this work, it is as-

sumed that the nuts are infinitely rigid and that the

contacting surfaces are nominally flat. This condition

can be achieved by designing the nuts as thick as pos-

sible. Considering the nuts infinitely rigid, the disk ex-

periences nearly one-dimensional compression stress,

and the contact pressure at a given temperature (Tm) is
computed with the following expression:

P ¼ P0 þ
ð�aad � �aasÞ

1
Es

ðb2�a2Þ
a2 þ 1

Ed

h i ðTm � T0Þ ð34Þ

where �aa is the mean value of the thermal expansion

coefficient between T0, the temperature at which the heat

switch is assembled, and Tm. The contact pressure at T0 is
P0. Mantelli and Yovanovich [15] and Katwijk and

Bennet [16] presented expressions similar to Eq. (34) in

order to predict the mean contact pressure of bolted

joints as a function the mean temperature of the joint.

There are no studies in the literature about the con-

tact conductance of threaded contacts. The existing ex-

perimental and theoretical contact conductance studies

are based on the contact between nominally flat (like

Mikic�s [9] model above) and/or ellipsoid surfaces. Since

it is difficult to predict the thermal contact conductance

of threads, the influence of the thread conductances on

the total resistance of the heat switch will be paramet-

rically analyzed in the next section. As it will be seen, the

thermal contact conductance of the threads can be ne-

glected without significant losses.
3. Study of the influence of the thread contact conductance

on the heat switch total thermal resistance

In this section, the effect of the thread contact

conductance on the heat switch total thermal resis-

tance is analyzed. The analysis is conducted in the
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non-dimensional form. The following dimensionless

parameters are employed:

b� ¼ b
a
; c� ¼ c

a
; d� ¼ d

a
; e� ¼ e

a
; k�i ¼

ki
ks
; h�c ¼

hca
ks

;

R� ¼ Rpksa2

cþ d þ e
; P �

O ¼ P0
E0 ; E

� ¼ E
E0 ; r� ¼ r

1:07am0:06

8><
>:

9>=
>;

ð35Þ

In order to simplify this analysis, it is assumed that the

contact conductances at both sides of the disk are equal,

that is, h�c1 ¼ h�c2 ¼ h�c . A dimensionless parameter U is

defined as the ratio between the thread contact con-

ductance and the disk–nut contact conductance:

U ¼ h�t1
h�c1

¼ h�t2
h�c2

ð36Þ

Fig. 3(a) shows the total thermal resistance of the heat

switch computed using the analytical two-dimensional

model ðR�
2DÞ as a function of the contact conductance

ðh�c ¼ h�c1 ¼ h�c2Þ and for U ranging from 0 to 1000. In

this graph, constant values of k�n1 ¼ k�n2 ¼ k�d ¼ 0:5 were

assumed, which correspond to the conductivities of the

materials (SS 304 and Ti-alloy) used in heat switch

prototype employed in the experimental study presented

later. The lower limit of U corresponds to the case where

the contact conductance of the threads are zero, and the

upper limit corresponds to the case where the conduc-

tances of the threads are 1000 times larger than the

conductances of the disk–nut interfaces. As it can be

seen in this graph, the thermal resistance increases as h�c
decreases, regardless of the value of U. For U ¼ 0, the

thermal resistances are only slightly larger than for

U ¼ 1000. In other words, U has little influence on the

thermal resistance of the heat switch. Therefore, the

error associated with a poor prediction of the thread

conductance is very small. This is very convenient given

the difficulty in predicting the thread conductance.

From this discussion, it is observed that the ther-

mal resistance of the thread can be considered infinity,

that is, U ¼ 0. By doing this, the heat flux through the

thread is being ignored and the heat flow inside the heat

switch is one-dimensional, along the axial direction. For

U ¼ 0, the heat switch total resistance value computed

using the two-dimensional model is exactly the same as

the value computed using the one-dimensional model,

that is, R2DðU ¼ 0Þ ¼ R1D. Therefore, the one-dimen-

sional model is sufficiently accurate to predict the total

resistance of the switch, which is good, given the com-

plex form of the equations that constitute the two-

dimensional model (Eqs. (11), (15), (19), (22), (24)) in

comparison with the one-dimensional model (Eq. (31)).

In order to close this discussion about the difference

between the values of total thermal resistance computed

using the two models presented previously, it is conve-

nient to perform an analysis in terms of the Biot number
(Bi ¼ hL=k) in the radial direction inside the nuts.

According to Table 2, which gives the geometrical

parameters and physical properties of the heat switch

employed in the experimental study (presented later on),

a typical heat switch nut made of stainless steel has a

conductivity of k ¼ 12 W/mK and has a characteristic

length of L ¼ b� a ¼ 0:013 m. A typical range of con-

tact conductance values hc for stainless steel is between 0

(for 0 contact pressure) and 2000 W/m2 K (for contact

pressure of approximately 2 MPa). Therefore, the Biot

number ranges from 0 to approximately 2.1 for this

example. For most of the operational range of the heat

switch, the Biot number is larger than 0.1, and therefore

the one-dimensional temperature field assumption in the

nuts could lead to significant errors. However, the aim is

to predict the total thermal resistance of the heat switch

and not the temperature field. For total thermal resis-

tance computation purposes, the one-dimensional model

is accurate, despite the Biot number in the radial direc-

tion of the nut being larger than 0.1.



Table 2

Geometrical parameters and physical properties of the heat switch tested

Parameter Value Parameter Value

a [m] 0.003 Ed [GPa] 200

b [m] 0.016 Es [Gpa] 115

c [m] 0.016 mn1 ¼ mn2 ¼ md 0.3

d [m] 0.020 r [lm] 2.2

e [m] 0.016 m [ ] 0.1

kn1 ¼ kn2 ¼ kd [W/mK] 11a ks [W/mK] 30a

15b 30b

aAt 100 K.
bAt 300 K.
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3.1. Non-dimensional parametric analysis

In this section, a parametric analysis is conducted in

order to study the relative influence of the design pa-

rameters (dimensions and materials) on the total thermal

resistance of the heat switch. The analyses will be con-

ducted in a non-dimensional form. The one-dimensional

conduction model, which was shown in the previous

section to be accurate, is used here.

In order to simplify the analyses that follows, it will

be assumed that the two nuts have the same thickness

ðd ¼ eÞ and that they are made of the same material. It

will be further assumed that the materials of the nuts are

the same as the material of the disk, and that their

physical properties are equal. With these assumptions,

and by substituting the non-dimensional parameters

(Eq. (35)) in the expressions that constitute the theo-

retical model for the total resistance of the heat switch

(Eqs. (31)–(34)), after some algebraic manipulations,

one obtains:

R�
t ¼ R�

1D ¼ 1

"
þ k�ðb�2 � 1Þ
1þ r�

l�P�
0
ð1�e�Þ

#�1

ð37Þ

where:

e� ¼ DT ð�aad � �aasÞ
P �
0

ðb�2�1Þ
E�
s

þ 1
E�
d

h i ð38Þ

The parameter l�, appearing in Eq. (37), is the dimen-

sionless total length of the heat switch ðl� ¼ c� þ
d� þ e�Þ. In Eq. (38), DT ¼ T0 � Tm is the temperature

decrease experienced by the heat switch between the

assembly temperature T0 and a given temperature Tm.
The parameter e�, which appears in Eq. (37) and is de-

fined according to Eq. (38), is named the dimensionless

differential thermal expansion parameter. It can be in-

terpreted as the ratio between the amount of differential

thermal expansion at a given DT and the amount of

thermal expansion necessary for the complete decou-

pling of the heat switch. Therefore, during the operation

of the heat switch, e� assume values between 0 (assem-

bly) and 1 (decoupling).
According to the definition of the dimensionless pa-

rameters given by Eq. (35), the dimensionless total

thermal resistance R�
t (Eq. (37)) represents the ratio be-

tween the resistance at a given temperature Tm and the

maximum possible resistance (when the heat switch is

decoupled). Therefore, R�
t is 1 at the decoupling tem-

perature. When the disk is coupled, 0 < R�
t < 1. Note

that R�
t can not reach zero because the material and

contact resistances are always larger than zero.

Fig. 3(b) shows a graph of the dimensionless total

resistance of the heat switch R�
t as a function of the two

dimensionless groups ½k�ðb�2 � 1Þ� and ½l�P �
0 ð1� e�Þ=r��,

that appear in Eq. (37). The dimensionless group

½k�ðb�2 � 1Þ� represents the ratio between the disk–nuts

path conductance and the shaft path conductance. The

larger are k� (conductivity) and b�2 (cross-sectional area)
of the disk and the nuts, the smaller is the total resis-

tance of the heat switch. The dimensionless group

½l�P �
0 ð1� e�Þ=r�� represents the ratio between the disk/

nuts contact conductances and the shaft conductance. If

the contact conductances are large (small roughness r�,

small thermal expansion e�, and large assembly pressure

P �
0 ) in comparison with the material thermal conduc-

tance of the shaft ð1=l�Þ, the total resistance of the heat

switch is small. It can be also seen that if one of these

two non-dimensional groups is zero, the total resistance

of the heat switch reaches its maximum value ðR�
t ¼ 1Þ.

The dimensionless group ½l�P �
0 ð1� e�Þ=r�� is zero when

e� ¼ 1, that is, when the heat switch is decoupled. On the

other hand, the dimensionless group ½k�ðb�2 � 1Þ� can

not be equal to zero in practical applications because

both b� ¼ b=a > 1 and k� > 0.

The dimensionless group ½l�P �
0 ð1� e�Þ=r�� varies

during the operation of the heat switch because e� is

proportional to DT (Eq. (38)). Therefore, as the di-

mensionless group ½l�P �
0 ð1� e�Þ=r�� is directly propor-

tional to DT , the curves of constant ½k�ðb�2 � 1Þ� of Fig.
3(b) represent the possible curves of thermal resistance

versus mean temperature of the heat switch. As it can be

seen, when ½l�P �
0 ð1� e�Þ=r�� > 0:5 and ½k�ðb�2 � 1Þ� >

20, the values of total resistance R�
t are small and are

almost constant with temperature. On the other hand,

the total resistance of the heat switch changes very
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quickly with temperature when ½l�P �
0 ð1� e�Þ=r�� < 0:1.

The smaller the value of ½k�ðb�2 � 1Þ�, the smoother the

transition between the minimum and the maximum total

resistances. Therefore, the behavior of the total resis-

tance of the heat switch with temperature can be deter-

mined during the design process by choosing appropriate

values for these two non-dimensional groups.

Another important design parameter is the switching

ratio of the heat switch, defined as the ratio between the

maximum and the minimum possible thermal resis-

tances. Substituting e� ¼ 0 in Eq. (37), one obtains the

minimum dimensionless total resistance of the heat

switch. The minimum dimensionless resistance repre-

sents also the ratio between the minimum and the

maximum total resistances. Therefore, for e� ¼ 0 the

parameter 1=R�
t represents the switching ratio of the heat

switch, that is, 1=R�
t ¼ Rt;max=Rt;min. Fig. 3(c) shows a

graph of the switching ratio as a function of the di-

mensionless groups ½k�ðb�2 � 1Þ� and ½l�P �
0 =r

��. As it can

be seen in this graph, the switching ratio increases with

both ½k�ðb�2 � 1Þ� and ½l�P �
0 =r

��.
Substituting e� ¼ 1 in Eq. (38) and rearranging the

resulting expression one obtains:

½DT ð�aad � �aasÞ�max ¼ P �
0

ðb�2 � 1Þ
E�
s



þ 1

E�
d

�
ð39Þ

which is the maximum amount of differential thermal

expansion that the heat switch needs to decouple. As it

can be seen from this equation, the decoupling temper-

ature ½DT �max depends on the thermal expansion coeffi-

cients and on the elastic properties of the materials, as

well as the ratio between the heat switch external radius

and the shaft radius (b�). Given the decoupling tem-

perature, the equation above can be employed during

the design process in order to select the materials and the

ratio b� ¼ b=a of the heat switch.

When the heat switch is decoupled, conduction

through the shaft is the only possible heat path across

the heat switch. As the heat transfer is one-dimensional

along the shaft, the maximum resistance of the heat

switch is defined by the geometry and the thermal con-

ductivity of the shaft. Therefore, in order to obtain a

high thermal resistance, the shaft must be made of a

material possessing low thermal conductivity and must

have a high length-to-area ratio.
Fig. 4. Experimental set-up (a) and thermocouple locations (b).
4. Experimental study

The experimental study consists of measuring the

total thermal resistance as a function of temperature

(between 100 and 300 K) of a prototype of the heat

switch. The study was conducted in a vacuum thermal

test facility at the Satellite Thermal Control Laboratory

of the Federal University of Santa Catarina.
4.1. Experimental set-up

The experimental set-up employed in this study is

shown in Fig. 4(a). It consists basically of a vacuum

chamber, a cold plate, a thin circular electric heater and

a radiation shield. The vacuum inside the chamber is

4 10�6 mbar. The cold plate consists of a hollow

copper cylinder, filled with liquid Nitrogen. The heat

switch is placed between the cold plate and the electric

heater. MLI blankets cover the electric heater in order to

avoid thermal radiation losses to the radiation shield.

The radiation shield consists of an aluminum cup placed

over the cold plate and surrounding the heat switch.

During the tests, the radiation shield reaches the cold

plate temperature, and absorbs all radiation coming

from the external environment. 15 T type, gage #40

thermocouples, located as shown in Fig. 4(b), measured

the temperatures in several points of the heat switch.

The prototype of the heat switch was made of

Stainless Steel 304 (nuts and disk) and titanium alloy

98.9%Ti–1.1%Al (shaft). Table 2 shows the numerical

values of the geometrical parameters and physical

properties of the prototype tested. The values of thermal
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expansion coefficients are not presented in this table

because no reliable source was found in the literature

for this property. However, the difference between the

thermal expansion coefficients �aad � �aas, which is required

as an input to the models, was measured in the experi-

mental study that is presented later. The contacting

surfaces of the nuts and disk were lapped in order to

avoid flatness deviations. The flatness deviations of the

surfaces were measured and were found to be less than 1

lm. The contacting surfaces were then bead blasted in

order to get isotropic rough surfaces with approximately

Gaussian roughness height distributions.

As the elastic properties E and m of SS304 and Ti-

Alloy do not show significant variation with temperature

between 100 and 300 K [17], they are assumed to be

constant during the tests. The thermal conductivities of

the stainless steel and of the Ti-alloy were measured from

cylindrical specimens machined from the same stock bars

as the heat switch. The conductivities were measured at

two mean temperatures levels (100 and 300 K), and

employing the same experimental set-up described be-

fore. For the conductivity measurements, cylindrical

specimens were placed between two cylindrical flux-

meters made of ARMCO Iron. The three cylinders were

then placed over the cold plate, with the electric heater on

the top. As the thermal conductivity of the ARMCO is

well known, the heat flux crossing the test column can be

estimated very accurately. The measured values of the

thermal conductivities of SS 304 were 11 and 15 W/m2 K

at 100 and 300 K, respectively. These values are in close

agreement with the values of 10 and 15.5 W/m2 K, re-

spectively, found by other researchers [17]. This result

shows that the experimental set-up gives accurate results.

The thermal conductivities at temperatures between 100

and 300 K are estimated by linear interpolation. The

measured value of the thermal conductivity of the Ti-

alloy was 30 W/m2 K at both 100 and 300 K.
4.2. Test procedure

The total thermal resistance of the heat switch was

obtained through the measurement of the temperatures

along the heat switch for several power levels of the

electric heater. The temperatures were taken at steady-

state conditions, which were achieved approximately 1 h

after the power level was set. The total thermal resis-

tance was calculated as:

Rt ¼
Tm1 � Tm2

Q
ð40Þ

where

Tm1 ¼
T13 þ T14 þ T15

3
ð41Þ

Tm2 ¼
T1 þ T2 þ T3

3
ð42Þ
are the average temperatures at the top and the bottom

surfaces of the heat switch, respectively (see Fig. 4(b)).

The total heat flux Q [W] crossing the heat switch, is

given by:

Q ¼ 0:9VI ð43Þ

where V [V] is the voltage and I [A] is the current in-

tensity of the DC power supply. The correction factor

0.9 was introduced into the expression above in order

to take into account for the heat loss from the heater to

the cold plate by conduction through the power supply

wires. This means that 10% of the heat dissipated in the

heater is conducted to the cold plate through the power

supply wires without crossing the heat switch. This

value was obtained during the thermal conductivity

measurement tests by dividing the total heat flux

crossing the heat fluxmeters by the electrical power

supplied to the heater (VI). The value of 0.9 is the av-

erage of 14 readings at different power levels of the

electric heater. The standard deviation of these 14

readings was 0.05.

The mean temperature of the heat switch is defined

as:

Tm ¼ Tm1 þ Tm2

2
ð44Þ

A correlation between the contact pressure P0 at room

temperature T0 and the mounting torque MT was pre-

viously established by means of a load cell and a tor-

quimeter. It is given by:

P0 ¼ 853; 700MT ð45Þ

Therefore, given the mounting torqueMT it is possible

to evaluate the contact pressure at room temperature

(P0), which is used in Eq. (34). The pressure distribution

over the contacting surfaces was also measured. A Fuji-

film� pressure sensitive film was used for this purpose.

The film was placed between the contacting surfaces and

when the pressure was applied, the color density of the

film changed according to the pressure level. The contact

pressure variations along the contact interfaces of the

heat switch were found to be less than 10%.
4.3. Uncertainty analysis

The thermocouples were calibrated at room temper-

ature and at the temperature of saturated liquid nitro-

gen. The uncertainties of the temperature readings were

±0.3 K. The uncertainties of the voltage and the current

intensity were ±0.01 V and ±0.01 A, respectively. The

total percentual uncertainty of the heat flux crossing the

heat switch (Q) is ±4%. Following the methodology of

error propagation described in Holman [18], the maxi-

mum uncertainty of the measurements of the heat switch

total thermal resistance, computed using Eqs. (40)–(43),
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is ±4%. The uncertainty in the computation of the mean

temperature of the heat switch (Eq. (44)) is ±0.2 K.
5. Experimental results and comparison with theory

The heat switch was assembled with a torque of

MT ¼ 2:4 Nm, which corresponds to an initial contact

pressure of P0 ¼ 2 MPa (Eq. (45)) at a temperature level

of T0 ¼ 300 K. The tests were performed in descending

power levels of the electric heater. The following pro-

cedure was applied: starting from equilibrium at room

temperature, the cold plate was filled with LN2 and the

heater was turned ‘‘on’’. After the thermal equilibrium

was achieved, the temperature readings were taken and

then another electric heater power level was set. This

procedure was repeated for eight power levels.

The measured temperature distributions of the heat

switch for eight power levels are shown in Fig. 5(a). The

numbers appearing in the abscissa of this graph corre-

spond to the thermocouple numbers shown in Fig. 4(b).

For each one of the curves shown in Fig. 5, one can

obsverve three well defined regions: nut 1 (thermocou-

ples 1–6), the disk (thermocouples 7–9) and the nut 2,

(thermocouples 10–15). Between thermocouples 6 and 7,

all the curves present discontinuities, which are due to

the contact resistance between the nut and the disk. The

same is observed between thermocouples 9 and 10.
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Fig. 5. Experimental results: temperature readings (a) and

comparison between data and theory (b).
Fig. 5(b) shows the measured values of the total

thermal resistance ðRtÞ as a function of the mean tem-

perature level of the heat switch ðTmÞ. One can see nine

data points in this graphic, which correspond to the

eight power levels shown in Fig. 5(a), plus another point

collected previously at room temperature (Tm ¼ 288 K).

The data point at room temperature was collected using

water as the coolant of the cold plate instead of LN2,

which was used for the other eight points. The vertical

dashed line shown in the graphic of Fig. 5(b) corre-

sponds to the decoupling temperature. The decoupling

temperature is detected during the tests by inspecting the

time spent by the disk to reach steady-state. When the

heat switch is coupled, the disk temperature readings

reach steady-state at the same time as the rest of the heat

switch. When the heat switch is decoupled, the disk

temperature readings keep decreasing even after the rest

of the heat switch had achieved steady-state. For 1.2 W

ðTm ¼ 111:4 K) the heat switch was still coupled and for

0.9 W (Tm ¼ 104:7 K) the heat switch was already de-

coupled. Therefore, it can be concluded that the de-

coupling occurred between 111.3 and 104.7 K. In this

work, an average of this two values is adopted as the

decoupling temperature, that is Tdecoupling ¼ 108� 3:3 K.

Knowing the decoupling temperature, the mean dif-

ference between the thermal expansion coefficients was

computed using Eq. (34) and presented a value of
�aad � �aas ¼ 2:4 10�6 K�1. Substituting this value and the

other required input parameters (Table 2) into the the-

oretical models for prediction of the total thermal re-

sistance of the heat switch (Eqs. (31)–(34)), one obtains

the curve shown in Fig. 5(b). As it can be seen in this

graphic, the comparison between theory and experiment

is fairly good. For 130 < Tm < 300 K, the theory over-

predicts the experimental data with a maximum differ-

ence of 64%. On the other hand, for Tm < 130 K the

models underpredict the experimental data with a

maximum difference of 25%. The minimum difference

between theory and experiment is only 0.3% at Tm ¼ 104

K. It is convenient to recall that the value of �aad � �aas

obtained here is a mean over the temperature range

between T0 and Tm. However, Ref. [17] shows that the

thermal expansion coefficients for SS 304 and Ti-alloys

present more or less the same trend of variation with

temperature. In other words, despite the fact that the

absolute values for both SS 304 and Ti-alloys vary with

temperature, the difference between them is practically

constant. Therefore, assuming a constant value of
�aad � �aas for temperature ranges other than between T0
and Tm should not lead to considerable errors.

If a plastic model for contact conductance, such as

the model of Yovanovich [10], is employed instead of the

elastic model of Mikic [9], slightly higher contact con-

ductances would be predicted, and the theoretical curve

of Fig. 5(b) would lie slightly lower. The difference be-

tween these two models can be neglected in this case.
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Sridhar and Yovanovich [19] made an extensive review

of the existing contact conductance models available in

the literature. They found that the plastic model of

Yovanovich [10] and the elastic model of Mikic [9] were

in good agreement with several other models investi-

gated and also with experimental data. According to

Sridhar and Yovanovich [19], these two models are also

simpler and easier to manipulate than the other models.

Despite the two contact conductance models tested here

predicted similar values and they were shown by other

researchers to be very accurate to predict experimental

data other from other researchers, it is believed that they

are not appropriate for this particular study. It is be-

lieved that the differences between the theoretical pre-

dictions and the experimental data are due to the

inaccuracy of the thermal contact conductance model. It

is known from other studies, such as Milanez et al. [11],

McWaid [20] and Li et al. [21], among others, that

during the unloading of the contact pressure, thermal

contact conductance of stainless steel is larger than

during loading. This phenomenon is known as the hys-

teresis effect of thermal contact conductance. The hys-

teresis effect is a consequence of plastic deformations of

the contacting asperities occurred during the assembly of

the heat switch. The asperities do not recover their

original shape during the unloading of the contact

pressure, and therefore, the real contact area during

unloading is larger than during loading. It is also re-

ported by Sridhar and Yovanovich [10], that at light

contact pressures, thermal contact conductance present

an unusual behavior and are not accurately predicted by

the models available. Milanez et al. [11] proposed an

explanation for this behavior: the highest contacting

asperities are shorter than predicted by the models,

therefore the mean separation gap at light contact

pressures is smaller than predicted by the theory, and as

a consequence the thermal contact conductance is larger

than predicted. The hysteresis effect and the light contact

pressure effect are very difficult to predict and further

studies are needed in this regard.
6. Summary and conclusions

This work presents theoretical and experimental

studies of a bimetallic heat switch for space applications.

The heat switch is passively actuated and presents a

thermal resistance which is a function of the mean

temperature. Two analytical models were developed to

predict the thermal resistance of the heat switch: a two-

dimensional model and an one-dimensional model.

An analysis of the influence of the thermal contact

conductance of the threads on the heat switch total re-

sistance is conducted using the two-dimensional model.

The analysis showed that the total thermal resistance of

the heat switch is little affected by the value of the
contact conductance of the threads. The analysis also

shows that the temperature field of the heat switch is

basically one-dimensional along the axial direction and

that the one-dimensional model is accurate to predict the

total thermal resistance of the heat switch. A non-

dimensional parametric analysis is also conducted in

order to study the influence of the parameters that affect

the total thermal resistance of the heat switch. The non-

dimensional analysis showed that two dimensionless

groups govern the behavior of the total thermal resis-

tance of the heat switch.

The theoretical models are compared against exper-

imental data collected from a prototype of the heat

switch. The comparison shows a fairly good agreement

between the theoretical prediction and the experimental

data. It is believed that the differences observed between

the predicted and the measured values of the total

thermal resistance of the prototype is due to the inac-

curate prediction of the thermal contact conductance of

the disk–nut interfaces. The hysteresis effect of thermal

contact conductance and the relatively light contact

pressures seem to play an important role on the total

resistance of the heat switch, but it is not being ac-

counted for because they are difficult to predict. Further

studies are needed in the thermal contact conductance

field, especially for contacts under the operational con-

ditions of the heat switch.
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