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Analytical Model for Thermal Performance Analysis
of Enclosure Heated by Aligned Thermosyphons

Fernando H. Milanez* and Marcia B. H. Mantelli’
Federal University of Santa Catarina, 88040-900 Florianopelis, SC, Brazil

An analytical model is developed to analyze the thermal performance of a rectangular enclosure heated by two-
phase thermosyphons. The model is used to predict temperatures and thermal resistances between the elements
of the enclosure based on experimental data obtained from an actual enclosure heated with a total heat input
of 1280 W from room temperature and up to a maximum temperature of 330°C, The rms differences between

the model and the experimental data vary between 3.4 and 7.6°C. Thermal j
predict are evaluated indirectly by means of the proposed model. The model is also used to est

t resistances that are difficult to
nate the relative

importance of the three heat-transfer modes inside the enclosure. The results show that, given the very isothermal
characteristic of the air inside the enclosure, which does not lead to effective natural convection heat transfer, most
of the heat inside the enclosure is transported by radiation and by conduction. Also, the usual approach of riveted
joints employed in domestic ovens is shown to be thermally inefficient.

Nomenclature
A = surface area, m’
¢ = specific heat. J/kg - K
e = thickness, m
F = view factor
h = convection heat-transfer coefficient, W/m* - K
k = thermal conductivity, W/m - K
m = mass. kg
N = number of thermosyphons
q = heat-transfer rate, W
R, thermal contact resistance between the thermosyphon
condenser and the fin, K/W
T temperature, K
t = time,s
€ = surface emissivity
o 5.67 % 107* W/m?K* (Stefan-Boltzmann constant)

Subscripts

air = airinside the enclosure
amb = external ambient
c = thermosyphon condenser
cav = enclosure
cond = conduction
conv = convection
3 = thermosyphon evaporator
ext = external
ewalls = external walls
f = working fluid
fin = fin
ins = insulation blanket
int = internal
iwalls = external walls
P = constant pressure
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Introduction

‘WO-PHASE thermosyphons are high-efficiency heat-transfer

devices. Various thermosyphon configurations have been de-
veloped over the last decades for different applications. including
high-performance heat exchangers for nuclear energy and petroleum
refinery industries. solar-energy absorbers, to name a few. Faghri'
and Peterson,” among others, present reviews on the heat pipe and
two-phase thermosyphon technology and applications. The ther-
mosyphon thermal resistance is very low because during liquid—
vapor phase change there is no temperature variation. The thermal
resistance of the thermosyphon is basically determined by the t
mal resistances of conduction through the tube walls and by the
thermal resistances of vaporization and condensation of the work-
ing fluid, which are generally very small. Apart from featuring a
very low thermal resistance, another important characteristic of two-
phase thermosyphons is a very uniform temperature distribution in
the condenser section when the external heat-transfer coefficient is
small. Recently, Mantelli and coworkers® ® have successfully ap-
plied two-phase thermosyphons to isothermalize enclosures, such as
bakery ovens. The objective of this is to develop an analytical
model to predict the thermal performance of this type of enclosure.
A lumped temperature methodology is employed to compute the
temperature variations with time of each component of the system
and the thermal interaction among the components.

Problem Statement and Geometry

The geometry of the enclosure under study is presented in Fig. 1. It
is composed basically of two mild steel sheets. which constitute the
top and bottom walls and two aluminum sheets (side walls) art
to each other by means of riveted joints (Fig. la). The sheets
assembled in the form of a rectangular enclosure (Fig. 1b) with di-
mensions 0.38 x 0.48 x (.61 m. Eigh: thermosyphons are attached
mlenl.ﬂlv to side walls of the enclosure (Fig. Ic). so that the side
fins, helping to remove the heat from the thermosyphon
rs. The thermosyphon evaporators are tilted at 45 deg and
are located inside a combustion chamber below the enclosure. Two
metal sheets are riveted at the front and at the back of the enclo-
sure (Fig. 1d). An insulation blanket made of glass wool is wrapped
around the enclosure sheets and thermosyphons (Fig. 1e). Mild steel
sheets are placed externally to protect the insulation blanket (Fig. 11).
A glass wool blanket is used to insulate the enclosure back wall
(Fig. 1g). The front door, made of glass wool sandwiched by metal
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Fig. 2 Details of the thermosyphons/fin attachment.

sheets, completes the enclosure (Fig. 1g). At the center of the front
door, there is a double glass window for inspection.

Eight 12.7 mm outer diameter and 10.2 mm inner diameter
stainless-steel thermosyphons are used. The working fluid is distil-
lated water. The condenser section of the thermosyphons is 270 mm
long and is located inside the enclosure, attached to the side walls.
The thermosyphons have no adiabatic zone, and the evaporators
are 90 mm long. The nominal filling ratio is 100% of the evapo-
rator volume. A gas burner is placed below each row of evapora-
tors. The evaporators and the burner are confined in a combustion
chamber, completely separated from the enclosure. The number of
thermosyphons was determined based on the results of previous
works.** The geometry of the enclosure and the heat-flux density
in the evaporator section of the thermosyphons used in this study
are approximately the same as in the bakery oven studied earlier.
The spacing between the thermosyphons was determined by simply
dividing the length of the enclosure (0.48 m) by four, which is half
the total number of thermosyphons.

The details of the thermosyphon/fin attachment are shown in
Fig. 2. The condenser fin was deformed to accommodate 1 the cir-
cumferential area of the thermosy phon along the entire length of the
condenser. The fin is sandwiched between the thermosyphon and a
steel angle. A steel wire clamp is used to squeeze the fin against the
thermosyphon. The function of the steel angle is to distribute the
contact pressure evenly over the interface, minimizing the occur-
rence of gaps where there is no effective contact, which would lead
to a larger thermal resistance at the joint between the thermosyphon
and the fin. An aluminum tape is placed between thermosyphon
and the fin. Under compression, the aluminum tape deforms easily,
helping to fill the gaps between the thermosyphon and the fin and
minimizing the overall thermal resistances of these interfaces.

The objective of this work is to develop a theoretical model that
can be used to analyze the thermal performance of the enclosure.

By “analysis of thermal performance.” one means three main as-
pects: 1) estimation of the temperature variations of the enclosure
components with time for a given initial condition and for a given
heat power input; 2) estimation of the thermal resistances between
the metal sheets that constitute the fins and the enclosure internal
and external walls, and the thermal resistance between the ther-
mosyphon and the fin: and 3) estimation of the percentage of each
heat-transfer mode (conduction, convection, and radiation) among
the enclosure elements.

Enclosure Theoretical Model

The physical model adopted for the heat-transter path is described
now. The hot exhaust gases inside the combustion chamber heat the
thermosyphon evaporators by radiation and convection. The ther-
mosyphon transport the heat from the evaporator end to the con-
denser end. From the condensers, heat is transferred by radiation
to the enclosure internal walls, by convection to the air inside the
enclosure and by conduction and radiation to the fins. The fins lose
heat by radiation to the enclosure internal walls, convection to the
air, and conduction to the insulation blanket and to the enclosure
internal walls through the riveted joints. The air receives heat by
convection only because. in the range of temperatures of interest
(below 330°C), it is transparent to thermal radiation. According to
the procedure described by Incropera and De Witl,” only water va-
por and CO; participate in radiation heat exchanges. The other gases
present in the air are transparent to thermal radiation. The contri-
bution of vapor water and CO- was estimated to be approximately
5%. which is the value of the effective emissivity of the air inside
the enclosure. Because this parcel is small, the air is assumed to be
transparent to thermal radiation. Heat reaches the air by convection
coming from the fins and from the condensers. The air transports
heat to the enclosure internal walls (back wall, bottom wall, top wall,
and door) by means of convection. The enclosure internal walls re-
ceive heat by radiation (from the thermosyphons and the fins), by
conduction (from the fins through the riveted joints), and by convec-
tion (from the air). The internal walls (door, back. bottom, and top)
transfer heat by conduction to the insulation blanket and also to the
enclosure external walls through “thermal short circuits™ between
the internal and the external walls. These short circuits are thermal
paths between the internal and external walls other than conduction
through the insulation blanket, such as riveted joints that attach the
enclosure internal walls to the enclosure external walls, radiation
heat losses through the glass window on the door, and ineffective
door gasket sealing. which are difficult to quantify. The insulation
blanket receives heat by conduction from the fins and from the enclo-
sure internal walls and loses heat also by conduction to the external
walls of the enclosure. The external walls receive heat by conduction
from the insulation blanket and also from the internal walls through
the thermal short circuits. Finally, the external walls lose heat by
convection and by radiation to the external environment.

The enclosure is divided into six elements: thermosyphons, fins
(side walls), enclosure internal walls (back wall, bottom wall, op
wall. and door), air, insulation blanket, and external walls. The tem-
perature is assumed to be uniform inside each element. Each element
is at a different temperature level, and the elements are thermally
connected to each other through radiation, and/or convection and/or
conduction heat transfer. Given the complexity of the problem’s
geometry, an approximate model is developed based on energy bal-
ances involving the main heat-transfer modes for each element. The
mathematical model of the enclosure consists of a system of ordinary
differential equations, obtained through the energy balances. The en-
ergy transfer rate coming into the element minus the energy transfer
rate coming out of the element must be equal to the rate of accumu-
lation of energy inside the element. Energy comes into and out of
the elements in the form of heat (radiation, conduction, convection).
Energy is accumulated inside the elements in the form of internal
energy, which leads to a rise of the element temperature with time.

Element Energy Balances

In this section, the thermal energy balance for each element is
developed.
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Thermosyphons
The following thermal energy balance equation is obtained for
the thermosyphons:

aT,
Nimcp; + m;:-_,;)? =q.—q. [4)]
[’

where ¢, (J/kgK) is the specific heat at constant pressure and ¢,

(J/kgK) is the specific heat at constant volume. The left-hand side of

Eq. (1)is related to the thermal inertia of the thermosyphon tube and
the working fluid. It is assumed that only the liquid phase contributes
to the thermal inertia of the working fluid, that is, the vapor mass is
small. The rate of heat transfer from the combustion chamber to the
thermosyphon evaporator is g, (W), while g. (W) is the rate of heat
transfer out of the thermosyphon condenser and into the enclosure.
The rate of heat transfer out of the condenser is given by

G = Gradccav + Geond.c-fin F Geony.c-air (2)

The subscripts rad, cond, and conv refer to the mode of heat
transfer: radiation, conduction, and convection, respectively. Thus,
Grad.c-caow Means the rate of heat transfer by radiation from the con-
densers of the thermosyphons to the enclosure. Because the ther-
mosyphon condenser surface area is much smaller than the enclosure
surface area, the radiation heat transfer between the condenser and
the enclosure can be estimated through the following expression:

Gudcean = N(AS a0 (T} = T4, 3)

where £, is the emissivity and A, (m?) is the area of the condenser
external surface. The condenser surface area is divided by two be-
cause approximately one-half of the area of the condenser is facing
the enclosure. The other half is facing the fin (see Fig. 2). Because
the aluminum tape between the thermosyphons and the fin deforms
easily under compression to fill the gaps between the two contact-
ing surfaces, there is no exchange of heat by radiation between the
thermosyphon and the fin attached to it. The preceding expression
is valid for a diffuse, gray. and convex surface of small dimensions
‘mside of a large enclosure at a uniform temperature 7,,,. In this
model, “enclosure™ refers to the set of two fins (side walls) and the
other internal walls (door, bottom, top. and back walls). Therefore,
T..v is not uniform because the fins and internal walls are at different
temperatures. The enclosure temperature is defined as

o= (FemTin +

fin

wal\xﬁ,._..h)/f‘-w.\ 4)

This expression for the enclosure temperature represents a mean
value between the temperatures of the fins 7}, and of the internal
walls 7} .. weighed by the view factor between the thermosyphon
condenser and the fin F_g, and the view factor between the con-
denser and internal walls F_; ... From the rule of the summation
of view factors, the view factor between the condenser and enclosure
is given by

Fecaw = Fotin + Feiwans = 1 (5)

The fraction of the radiation energy that the condensers deliver to the
fins is calculated as a part of the total radiation that the condensers
lose to the enclosure. This fraction is given by the ratio between the
view factors from the condenser to the fin F_g, and the view factor
between the condenser and the enclosure F_,,. that is,

Grad.c-iin = (Fectin/ Fe-cav Mhrad c-cav (6)

This fraction is related to the radiation heat transfer between the
thermosyphon and the fin on the opposite side of the enclosure.
As already mentioned. the radiation heat transfer between the ther-
mosyphon and the fin on the same side of the enclosure is negligible.
Despite the approximate nature of Egs. (3-6), the amount of radia-
tion that the condensers lose to the enclosure is very small and does
not affect the overall result, as it will be seen later.

The rate of conduction heat transfer between the thermosyphon
condenser and the fins g a.c-6n 18 given by

Geond.c-tin = N[(T: — Tin) /R ] )]

The convective heat-transfer rate between the thermosyphon con-
denser and the air inside the enclosure ¢egny c.qir is given by

Geomv.cae = NIt FAAT, = Tyir) (8)

where h;, (W/m?K) is the convection heat-transfer coefficient inside
the enclosure. The condenser surface area is multiplied by % to
account for the part of the condenser area that is in contact with the

air, according to Fig. 2.

Fins
For the fins, the following energy balance equation is obtained:

£l

MiinsCp.fin = Gradc-tin T Geond,c-fin — Geond fin-isol

it

= Geond.fin-iwalls — Grad fin-iwalls — Geon.fin-air ©)

The fins receive heat from the thermosyphon condensers by radi-
ation geq cn and by conduction G g c-in- according to Eqgs. (6) and
(7). The fins lose heat to the insulation blanket guong fin 1. and the in-
ternal walls Geong finiwan by conduction, the internal walls g fini wan
by radiation, and the air geon in.4ir by convection. These parts are
calculated. respectively, through the following equations:

KinsAfin -, o
Geond. i = Zﬁtlnn = Tin) (10}
Tin = Tiwans
cond.finviwally = 2 ——————— 11
sl Reond.fini walls e

Grad finiwalls = 2

" '7("';?:- = Tan)
[(1 — &6n) /€t Atin + 1/ Agin Flindi.waits + (1 = i wane) /& wats A waits]
(12)
Geonv.in-aie = M2 Agin (Tin = Tair) (13)

The factor two that appears in the numerator of Eq. (10) corre-
sponds to the number of fins, while ;,, (W/mK) is the thermal con-
ductivity of the material of the insulation blanket, Ay, (m®) is the
surface area of cach fin, and T;, (K) is the mean temperature of the
insulating blanket. The thermal resistance Reond fin-i walls, appearing
in Eq. (1), is related to the conduction between the fins and the in-
ternal walls through the riveted joints. Equation (12) corresponds to
the radiation heat exchange inside an enclosure formed by two gray
and diffuse surfaces (fins and internal walls). This expression bears
the hypothesis that the thermosyphon condensers do not participate
in the radiation heat exchange process between the fins and the in-
ternal walls. Put in another way, the amount of radiation emitted by
the fins that is reflected by the condensers and reaches the internal
walls is very small. This hypothesis is reasonable considering that
the dimensions of the thermosyphons are small in comparison with
the dimensions of the fins and the internal walls.

Air
The heat balance for the air contained inside the enclosure is
T
MairCpait —= = Geoncosie  Geon incie — Geonaie- walks (14)

The air inside the enclosure exchanges heat by convection only, as
already mentioned. It receives heat from the condensers and the fin
according to Eqgs. (8) and (13) and loses heat to the internal wal
Geonv.air-i.walls» Which is calculated with the following expression:

Geonv.aic-iwalts = HintAi wais(Tair — T wanis) (15)
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The convective heat-transfer coeflicient between the air and the
internal walls could be different from the coefficient between the air
and the fins. as in Egs. (8) and (13). However, given the approximate
nature of this model, it asonable to admit that these coefficients
are approximately the same, that is. the local convective heat-transfer
coefticient is uniform inside the entire enclosure.

Internal Walls
The following energy balance is adopted for the internal walls:

T wans
dr

R wallsCp.iwalls = Grad.c-iwalls T Grad fin-iwalls + Geonv.air-i.walls

+F Geond.fin-iwatts £ Geond iwalls-ins = Geond.i walls-e.walls (16)

The internal walls receive heat by radiation from the fins [Eq. (12)]
and from the thermosyphon condensers, which is estimated through
the following expression:

Gradciwalts = (Feawans/ Fe-can Jrad c-cav an

Similarly to Eq. (6), the amount of radiation that the condensers lose
to the internal walls is calculated as a fraction of the total radiation
that the condensers lose to the entire enclosure. This fraction is given
by the ratio between two view factors: condenser to internal walls
Feiwane and condenser to enclosure F. . The internal walls also
receive heat by convection from the air, according to Eq. (15), and
by conduction from the fins through the riveted joints. according to
Eq. (11). The internal walls deliver heat by conduction to the insula-
tion blanket geond i walls-ins» Which is calculated through the following
expression:

(Tiwans — Tins) (18)

Heond.iwalls-ins =

The internal walls lose heat directly to the external walls by con-
duction through thermal short circuits without passing through the
insulation blanket. This energy amount, called goond i watiec wallss 15
estimated by means of the following expression:

Geond.iwallsewalls = (Tisans = Tewanis)/ Reond.i.walls-e.walls (19)

where Riong i wants-c.wans 18 the conduction thermal resistance between
the internal and the external walls. This is the shori-circuit thermal
resistance.

Insulation Blanket
The following heat balance equation is obtained for the insulation
blanket:

BT, g
M€, T = Geond.iwalls-ins + Geond tinins — Jeondins-ewatts  (20)
The insulation blanket receives heat by conduction from the in
ternal walls Geond i waiisins [Eq. (18)], and from the fins geond.in
|Eq. (10)]. The blanket loses heat by conduction to the external

Walls Geong ins-c.waiis. Which is estimated as

Kins Acwalls .
Gomtimesovts = =55 (T = Tewas) 1)

External Walls
The external walls are subjected to the following heat balance
equation:

A7 wans

M wallsCp.e.walls ar - deondinsewails + Geond.i.walls-c.walls
a

= Geonv.c.walls-amb — Grad.c.walls-amb (22)
The enclosure external walls receive heat by conduction from the in-
sulation blanket ¢cong inec wans [Eg. (21)] and from the internal walls
through the thermal short circuits geong i walls-c.wans [EQ. (19)]. The ex-
ternal walls lose heat by convection to the external air Guon e.wait-amb
and by radiation to walls of the external ambient (laboratory)

Table 1 Geometrical parameters and

thermophysical properties of the enclosure
Parameter Value
Aoom? 00112
Afin. m? 0.1344
i, m? 1.00
2.50
0.9
0.08
Feiowan 0.92
N 8
my, ke 0.135
. kg 0.007
cu.r. JkgK 4000
pry JkgK 440
i, kg 1.05
Cp.fins JkgK 880
Eiin 0.95
& 0.95
0.95
0.95
Mlins. kg 1.3
Cp.ins: MkgK 800
Tann. K 300
Myir, kg 0.095
Cpair WkeK 1010
i alls- kg 5
Cins. M

Kins. m 0.05

Grad.ewalls-amb - These heat-transfer rates are estimated, respectively,
through the following expressions:

Geonv.cwalts-amb = RexeAe wants(Tewats = Tamp) (23)
Grad.cwalls-omb = E¢ V\.‘\Il\"Ac\AJH\('].:“‘."\ - fj,,.,) 24)

In this model, the conduction thermal resistances through the
metal sheets were neglected because they are much smaller than
the convection resistances between air and these walls. Table |
presents the values of the geometric parameters and the thermo-
physical properties that appear in Eqs. (1-24). The thermophysical
properties were extracted from the literature” at average lempera-
tures between 300 and 650 K, depending on the maximum tempera-
ture level reached by each element. The fins are made of commercial
aluminum, the internal and external walls are made of mild steel,
the thermosyphons are made of stainless steel, the working fluid is
water, and the insulation blanket is made of glass wool. The prop-
erties are assumed to be constant with the temperature. The view
factor between the fin and the internal walls was obtained from the
literature.” The view factor between the thermosyphon condenser
and the fin on the opposite wall was estimated from relations pre-
sented by Siegel and Howell.* The masses had been measured and
the emissivities were estimated from data presented by Incropera
and of de Witt” for fins and thermosyphons painted black. The in-
ternal walls are coated with rough/dark enamel, and the enclosure
external walls are white.

The convection heat-transfer coefficient between the external
walls and external air was estimated from the correlation of
Churchill and Chu for natural convection from a vertical flat sur-
face, as presented by Incropera and de Witt.” Under steady-state
conditions and at maximum power, the average temperature of the
external walls is approximately 70°C. Under these circumstances,
the estimated convective heat-transfer coefficient is approximately
5 W/m’K. For the horizontal wall at the lup of the enclosure, avail-
able correlations in Incropera and de Witt” for horizontal plates yield
an approximate value of 6 W/m’K. The value of he, =5 W/m*K
is adopted in the analyses that follow. The internal convective heat-
transfer coefficient iy, can be estimated from the same correlations
of natural convection just mentioned (Incropera and de Witt”), and
the result is approximately 4 W/m*K. The problem of natural con-
vection inside enclosures is discussed by Incropera and de Witt”
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and by Bejan,” among others. The problem is very complex, and
the models presented by these authors refer to boundary conditions
where the heat source is located at one of the side walls and the heat
sink is located on the opposite wall. Approximate values for the
internal heat-transfer coefficient using these correlations are within
3 and 4 W/m’K. However, these boundary conditions are differ-
ent from the boundary conditions encountered in the present work.
where the enclosure receives heat from the two side walls and loses
heat to the walls (\Ilhc front, back, bottom, and top. An approximate
vilue of hy,, =4 W/m’K is adopted in the analyses that follow.

Atthis stage, there are still three unknown parameters to complete
the system of equations [Eqs. (1-24)]. They are 1) the thermal re-
sistance between the thermosyphons and the fins R, 2) the thermal
resistance between the fins and the internal walls R, L waltse and
3) the thermal resistance between the internal and the external walls
Reond i walls-c.watis (thermal short circuits).

A briefl analysis of the Biot number (Bi) associated to each one
of the clements of the enclosure reveals relatively high values of Bi
(larger than 1) for the internal walls and the fins in the longitudinal di-
rection. In the direction of the thickness, the values are much smaller
than 0.1. Therefore, there is a considerable temperature gradient in
the longitudinal direction of the internal walls and the fins. On the
other hand. it was assumed in the modeling that these elements were
isothermal. Actually, constriction and spreading resistances appear
near the interfaces between the metal sheets because the thermal re-
sistance al these interfaces is smaller than the conduction resistance
inside the metal sheets. The thermal resistance between the fins and
the internal walls Reong.finiwans takes into account the riveted joint
thermal resistance and the constriction and spreading resistances of
the fins and of the internal walls. Similarly, the thermal resistance
between the internal and the external walls Reond; wanscwan. lakes
into account the riveted joint thermal resistance and the constriction
and spreading resistance of the internal walls. The same is valid
for the thermal resistance between the thermosyphons and the fins
R.. which is the sum of the joint resistance at the thermosyphon-fin
attachment and the spreading resistance of the fin.

All of these thermal resistances are originated at least in part
by joint resistances at the contact interface between two elements.
When two solids are put into contact, only the highest asperities
touch the other surface. Most of the apparent contact area is in fact
a gap filled with air. The thermal joint resistance is the association
of two thermal resistances in parallel: conduction through the con-
tacting asperities and conduction plus radiation through the gaps.

350

Temperature [°C]

For the problem under study. gap resistance is much smaller.
So, the overall joint resistan ly the resistance of the gap.
Bahrami et al.'"” presents a detailed review of the thermal joint re-
sistance theory. These authors present an analytical model 1o com-
pute the gap resistance, which depends on rms surface roughness,
mean absolute surface slope. contact pressure, Vickers microhard-
coefficients, air conductivity, thermal accommaodation coeffi-
cients caused by the air-solid combination, air mean free path,
Prandil number, and the ratio of the air specific heats. For the prob-
lem under consideration, specific experimental/theoretical studies
are necessary in order o model these contact resistances accurately.
The main difficulties lie in the flatness deviations of the contacting
sheets, their deformation under contact pressure, and the unknown
thermo-mechanical properties of the enamel coat. Furthermore. the
fins and the internal walls are in essence two-dimensional fins, with
spreading resistances presenting complex formulations. Therefore,
the resulting model would also be much more complex.

An alternative approach adopted here is to deal with the unknown
values of R.. Reond fin-iwallss ANd Reondiwallscwaite. These thermal re-
sistances are estimated with the help of the mnch.l developed in the
preceding section. The model. given by the system of equations
[Eqs. (1-24)] along with the experimental data of temperature as
a function of time." is used in this procedure. It consists of adjusi-
ing appropriate values for R., Reond fin-isatise AN Riond i wallcwalles
so that the predicted temperatures agree with experiments. With
the element temperatures adjusted, the radiation, conduction, and
convection heat-transfer fractions between the components of the
enclosure can be then estimated.

The resulting system of equations [Egs. (1-24)] is solved numer-
ically using the methodology of finite differences. The time deriva-
tives 87, /dr are replaced by AT;/Ar, where Ar=1 s and AT} is
the difference between the temperature of element i at time 1 and
its temperature at time ¢ — Ar. The system of equations is solved at
every time instant 1 using an implicit formulation scheme with the
algebraic manipulation software Maple 87,

A model similar to the one presented here was developed by da
Silva and Mantelli* for a bakery oven, where temperature measure
ments are used as input parameters to the model. The radiation, con-
vection, and conduction heat-transfer fractions are then estimated.

Results and Discussion
In this section. the theoretical model developed in the preceding

section is compared against experimental data presented by Milanez

LEGEND

oco+

et

-internal walls: 3.2°C

a 500 1000 1500

Time [s]

2500 3000

Fig. 3 Comparison between model and experimental data: R; = 0.11 K/W, Reond.fini.watis = 0.28 K/W, and Reond i.walts e.walts = 0.19 K/W.
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and Mantelli.® These authors measured the temperature variation
with time of a prototype of the enclosure described in this work.
The internal walls (back, bottom, and top) were instrumented with
seven thermocouples placed in the geometric center and at the border
of the each wall. The fins were also instrumented with two thermo-
couples: one placed 5 mm far from the thermosyphon condenser and
the other in the middle of two consecutive thermosyphons. The ther-
mosyphon condensers were instrumented with one thermocouple
each, located in the center. The temperature of the air was measured
with 27 thermocouples spread inside the enclosure. More details
of the experimental setup can be found in Milanez and Mantelli.®
As discussed before. the fins and the internal walls present rela-
tively large temperature gradients in the longitudinal direction. As
a lumped method is employed in the modeling. that is, assuming
isothermal elements, the average values of the several thermocou-
ples attached to each element were used in order to compare the
measurements with the model.

The thermal resistance of the thermosyphons was experimen-
tally obtained from a thermosyphon isolated from the enclosure. An
electrical heater was wrapped around the thermosyphon evaporator,
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while a fan cooled the condenser. The temperatures at three points of
the evaporator and at three points of the condensers were measured
by mean of thermocouples. The temperature drop across the ther-
mosyphon was obtained as the difference between the average of the
evaporator thermocouples and the average of condenser thermocou-
ples. By dividing the temperature drop by the heat power dissipated
in the electrical heater, a value of 0.1 K/W was found in the ranges
of temperature and heat-transfer rates of interest. During operation
in the enclosure, the average of the temperature drops between the
evaporators and the condensers was found to be 16 K. Dividing this
value by the thermosyphon total thermal resistance (0.1 K/W), one
obtains the average heat-transfer rate through each thermosyphon
as 160 W. Multiplying this value by eight, which is the number of
thermosyphons, one obtains the total power input as g, = 1280 W,
which is the first input to the model.

The next step is Lo search for values for the three unknown ther-
mal resistances: thermal resistance between thermosyphon and the
fins R, thermal resistance between the fins and the internal walls
Reond fin-i wans, and thermal resistance between the internal and exter-
nal walls Regng i wallse wans through the riveted junctions. Figure 3
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shows the temperature measurements as a function of the time
collected by Milanez and Mantelli® plotted along with the theo-
retical temperatures computed by the model with . =0.11 K/W,
Reond, fin-i watis = 0.28 KIW, and Regnd i walts-c.wans = 0.19 K/W. These
values were obtained by trial and error, so that the theoretical and
experimental values of temperature after 3000 s of test are approx-
imately equal. The rms differences between the experiments and
the model for each element are also presented in Fig. 3 and vary
between 3.4 and 7.6°C. The agreement is fairly good in the entire
period of time, given the thermocouple uncertainty of +1°C and the
fact that the thermal properties were assumed constant with tempera-
tre in the modeling. The largest differences between the data points
and the model curves occur during the early stages of the test (time
<500 ), especially for the thermosyphons and the fins. The thermal
inertia effects are more intense for time <500 s, especially for the
thermosyphons and the fins, which experience a steeper warm-up
curve than the other elements. As thermal resistance is generally
defined under steady-state conditions, it was opted to adjust the val-
ues of R, Reond fin-i waltes @00 Riong i walis-e.was Under near steady-state
conditions (7 = 3000 s) rather than to adjust the values so that the
rms differences are the smallest possible.

For a given heat power input, the internal wall temperature is
practically a function only of the resistance between the internal

and external walls Riop i walivewatis- Therefore, this is the first un-
known resistance to be adjusted. Figures 4a and 4b show a paramet-
ric study of the temperature curves obtained when values of 0.17
and 0.21 K/W are used in the model, respectively. As one can see,
by increasing the value of Rigngiwalls-ewans ONE increases the tem-
perature of the internal walls. Also, the temperature curves of the
internal walls, the air, the fins, and the thermosyphons are displaced
upwards, but the differences among them remain approximately
constant.

Having obtained the first unknown resistance, the next one
is the thermal resistance between the fins and the internal
walls R, iwalts. The fin temperature depends primarily on
Reond iniwanis- BY matching the fin theoretical temperature to the
experimental data, a value of Ry fini waite = 0.28 K/W was found.
Figures 5a and 5b show a parametric study of the temperature curves
obtained when values of 0.18 and 0.38 K/W are used, respectively.
The larger the value of Riquq fini.wans, the higher the temperature of
the fins, while the difference between the temperatures of the fins
and the thermosyphons remains approximately constant. Finally,
the thermal contact resistance between the thermosyphons and the
fins is obtained by matching the theoretical and experimental tem-
peratures of the thermosyphons. A value of R, =0.11 K/W was ob-
tained. Figures 6a and 6b show a parametric study of the temperature
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Table 2 Theoretical and experimental temperatures (°C)

3000 s

] +=1000s

Enclosure — e M

element Experimental  Theoreti Experimental  Theoretical

Thermosyphons 273 213 323 321
average

Fins 254 257 306 305

Air 200 203 264 257

Internal walls 178 187 243 241

Insulation —_— 129 — 173
blanket

External walls — 58 =70 72

profiles obtained when values of 0.06 and 0.16 K/W are used, respec-
tively. The larger the value of R, the higher the temperature of the
thermosyphon, while the other temperatures remain approximately
constant.

Table 2 shows the measured and the theoretical temperatures after
1000 s and after 3000 s of test. The experimental value of the exter-
nal wall temperature was measured using an infrared thermometer
and represents an approximate average of the external temperature
of the enclosure. The unknown thermal resistances were adjusted in
order to match the steady-state theoretical temperatures of the inter-
nal walls, fins, and thermosyphons to the experimental data (after

approximately 3000 s of test). The temperatures of the air. external
walls, and insulation blanket are calculated by the model. As one
can see, the agreement is good. After 1000 s of test. the theoretical
temperatures are slightly higher than the experimental data. These
small differences are, at least in part, caused by the thermophysical
properties, which were kept constant with temperature.

With the temperatures and the unknown thermal resistances calcu-
lated, the radiation, conduction, and convection heat-transfer parcels
between the elements of the enclosure can also be calculated. From
the total of 1280 W that is transferred into the enclosure by the ther-
mosyphons, 10% is transferred by radiation to the internal walls,
and only 1% is transferred by convection to the air. Almost 90% is
transferred to the fins by conduction, which shows the importance
of the fins in removing the heat from the thermosyphon. This result
also shows that the fins are working properly and that the thermal
resistance between the fin and the thermosyphons is s

From the total heat-transfer rate that reaches the fins, 10% is lost to
the insulation blanket by conduction, 40% is transferred by conduc-
tion to the internal walls through the riveted joints, 46% is transferred
by radiation to the internal walls, and only 4% is removed by the air
through natural convection. Adding these components with the heat
that the air receives directly from the thermosyphons, one observes
that only 5% of the enclosure heat input is transferred through the
air by convection. This is because the air inside the enclosure is at
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Table 3 Percentage of each heat-transfer mode in and out of
each element of the enclosure (%)

Radiation

Enc Convection Conduction

“nclosure - e T T

element In Out In Out In Out  Total
Thermosyphons 1w — I —"  89. 100
Fins 1 42 —_— B 89 44 90
Air _ 5 5 — 5
Internal walls 50 — 5 35 90 90
Insulation blanket — — — — 25 25 25
External walls —_— 60 —_— 40 100 100

“The h
cale

Table 4 RMS differences (“C) between model and data
as a function of the time-step interval

Enclosure element Ar=10s Ar=60s

Ar=1s Ar=2s
Thermosyphon 58 58 6.1 8.1
Fin 7.6 7.6 74 74
Internal walls 6.4 6.4 6.8 9.0

External walls 34 34 33 4.5

a very uniform temperature, as reported by Milanez and Mantelli.®
These authors observed a maximum temperature difference of only
8°C in the air inside the enclosure. Under these conditions, the air
behaves as a thermal insulator. Therefore the heat is removed from
the fins mostly by conduction and radiation.

Under steady-state conditions, the thermal insulation blanket
transports only 341 W of the total 1280-W power input, which is
approximately 25%. If there were no heat leakages, that is, no short
circuits between the internal and the external metal sheets that con-
stitute the enclosure, the insulation blanket would transport 100% of
the heat input. Therefore, one concludes that the effectiveness of the
enclosure insulation is approximately 25%. Approximately 75% is
transferred through the thermal short circuits between internal and
external walls. [Uis convenient to mention that the construction ap-
proach of the enclosure under study, that is, riveted metal sheets,
is commonly used in domestic and industrial ovens. One can then
conclude that this approach is not efficient because the thermal insu-
lation is directly related to the fuel consumption. Finally, the external
walls of the enclosure lose 60% of the total heat by radiation and
40% by natural convection to the environment. Table 3 presents a
summary of the percentages of the heat-transfer modes in and out
of each element of the enclosure with respect to the total heat input
(1280 W).
Uncertainty Analysis

The thermocouples (K-type) were calibrated in the range of tem-
peratures of interest and presented an uncertainty of =1°C. The
uncertainty of the overall thermal resistance of the thermosyphon is
+7%. The uncertainty of the enclosure heat power input is +9%.

A study of the influence of the time-step interval value in the nu-
merical solving of the model’s equations is summarized in Table 4.
It shows the rms differences between data and model for four dif-
ferent values for the time step: 1, 2, 10, and 60 s. As one can see,
the difference is very small when one uses either 1, 2, or even 10 s
as the time step. As for Ar =60 s, the rms differences are larger.
Because the computational time is not very sensitive to the time-step
interval, Ar =1 s is used in this work.

Summary

In this work, a theoretical model is developed in order to ana-
lyze the thermal performance of a rectangular enclosure heated by
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closed two-phase thermosyphons. The enclosure is divided into six
main elements. A lumped temperature approach is adopted for each
element. The elements are thermally connected among themselves
by means of radiation. conduction, and convection heat thermal
resistances.

With the input of 4 ible experimental data, the model is used
to estimate thermal resistances between elements of the enclosure
that are difficult to estimate theoretically, such as thermal resistances
at riveted joints. The relative importance of the three heat-transfer
modes between the elements that constitute the enclosure can also
be assessed with the model. The results show that, given the very
isothermal characteristic of the air inside the enclosure, which does
not lead to effective natural convection heat transfer, most of the
heat inside the enclosure is transferred by radiation and conduction.
Although radiation and convection are useful in the cooking process,
conduction between metal sheets generally means heat leakage and
waste of fuel. The results showed that most of the heat transferred
into the enclosure is lost through thermal short circuits between
the enclosure internal walls and the external environment, without
passing through the insulation blanket. This result indicates that the
riveted joint approach, generally employed in enclosures such as
baking ovens 1o attach the metal sheets to each other, is thermally
inefficient. For example, a thin thermal insulator could be inserted
in the riveted joint between the metal sheets, thus increasing the
short-circuit resistances Reongi walts-e.watis- The model developed here
could be used to compare different oven construction techniques,
The larger is the value of the thermal resistance between the in-
ternal and the external walls, that is, the larger is the short-circuit
resistances, the better is the oven thermal insulation. As a conse-
quence, the smaller the startup time is and the smaller the fuel con-
sumplion. Also, the impact of new designs on the balance between
radiation/convection/conduction. which are very important in the
cooking process, can be estimated.
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